
Table of Contents

 RPS Patching v4.0.0
 Introduction & Overview

 Introduction
 Design

 Access Control for Patch Management and Sync
 RPS Patch Management Workflow
 Sync Service Information
 RPS Patching Script Framework
 RPS Patch Manifest Definition
 New Configurations for CDN
 RPS Package Provider

 How To
 How to Patch Using RPS
 How to Create a Patchable Target Type
 How to Use Maintenance Windows
 How to Create an RPS Patch
 How to Disable or Enable an RPS Patch Using PowerShell
 How to Create a Patch Stream
 How to Transfer Non-Patching Content Delivery with RPS
 How to Load a Patch Stream
 How to Add a Patch Using PowerShell
 How to Remove a Patch From a Patch Stream
 How to Remove a Patch Stream
 Sideloading RPS Patches
 How to Approve and Reject Patch Streams
 Viewing Patch Stream Deployment Telemetry
 How to View All Patches
 How to Enable and Disable CDN Communication

 Additional Resources
 How to Create and Use Patch Chains

 External Patching
 Patch Telemetry UI
 Sidewinder

RPS Patching v4.0.0
Last updated on June 9, 2021.

Last Reviewed and Approved on PENDING REVIEW

Welcome to the RPS v4.0.0 Patching Documentation Landing Page
Rapid Provisioning System (RPS) is a flexible and powerful automation tool for managing software installation, updates, and
configuration. This repository has been created specifically for RPS developers and other RPS administration patching roles.

What is RPS Patching Documentation?
RPS Patching documentation provides details about the RPS patching system, including how to properly operate and maintain
RPS; and how to load, deploy, and check the status of patches and ISOs in RPS.

IMPORTANT

Documentation bundled with RPS v4.0.0 is accurate as of 9/20/2021.

Updated documentation can be found at: https://reactr.azurewebsites.us

To access documentation on how to create, edit, delete, and download patches and ISOs in REACTR, please visit RPS Patching in
REACTR, located at the website above.



Access Control for Patch Management and Sync
Last updated on August 3, 2021.

Last Reviewed and Approved on PENDING REVIEW

Introduction
This reference document describes the service account(s) and Windows services required for the Patch Management capability in
the Rapid Provisioning System (RPS).

Intended Audience
IT professionals and administrators who routinely build software deployment packages to update servers and workstations are
primary users of RPS.

Overview
1. RPS servers and clients, called targets, use a combination of certificates, Windows services, and service accounts.
2. A service account is a user account that is mapped into the logon of the Windows service on RPS servers.
3. Some services, such as DSC (Desired State Configuration) only need to run in the local system context, using the standard

Windows local system account.

V iew Windows Services

As an RPS Administrator,

1. logon to an RPS Server.
2. open Computer Management and Services.
3. Or use PowerShell.

Sync Service

Service Name: SyncService
Logon (service account): WebApiServiceAccount.
The Sync Service is a custom RPS windows service.
Startup Type: Automatic
The account lets the service communicate across RPS parent and child servers.
The service/account uses certificates for authentication which allows cross-AD-domain authentication.
The service collects and investigates which files it needs to download for BITS.

D istributed File System Replication Service

Service Name: DFS Replication (DFSR)
Logon (service account): WebApiServiceAccount.
The Distributed File System Replication (DFSR) is a Windows server feature and Windows service.
Startup Type: Automatic
The service/account uses certificates for authentication which allows cross-AD-domain authentication.
DFSR is a native Windows multi-master replication engine running on RPS servers to keep file folders synchronized.
DFSR was chosen for RPS as a more efficient and bandwidth-saving way to replicate RPS deployment files.

B ackground I ntelligent Transfer Service

Service Name: BITS
Logon: Local System
Startup Type: Automatic (Delayed Start)
BITS is a common Windows service running on all Windows clients and servers, such as for common Windows updates.

BITS is used also for RPS client-server communications.

D esired S tate Configuration

Service Name: DSC
Service Account Name: Local System.
The Desired State Configuration (DSC) or "Windows PowerShell DSC" is a foundational capability of RPS.
DSC is a management platform where RPS users can configure, deploy, and manage RPS packages.

RPS Patch Management Workflow
Last updated on April 21, 2021.

Last Reviewed and Approved on PENDING REVIEW

The RPS patch management workflow is described in 19 steps, in the following figure:

Figure 1: RPS Patch Management Workflow.

Patch Workflow
The workflow begins at the parent node, from users, who build package streams and packages using the RPS website or
PowerShell.

1. Patch and folder-to-target resource assignments are made by approving a Patch Stream, stored as resource assignments in
the RPS Configuration Management Database (CMDB).

2. RPS Sync service: This windows service (Sync service) detects an updated resource assignment in the CMDB.

3. The Sync/CDN Services work to transmit resource assignments to RPS child nodes.

4. The Child Node RPS server windows Sync Service updates the local CMDB with new resource assignments.

5. Clients (that run RPS services including the DSC) query a child node's CMDB and register its Target Item ID in the database.

6. Child node REST endpoints query the CMDB for all resource assignments of type Package for the specified Target ID.

7. CMDB: Returns requested Resource Assignment objects to the REST endpoint.

8. Child nodes return a list of patch name/version, ensure states, and deploy attempt counters to the RPS Client.

9. Client then sends a request for specific metadata to the REST endpoint.

10. REST endpoints provide metadata to clients and clients perform a state check.

11. Clients request missing patches needed to reach the desired state and also requests maintenance windows pertinent to the
client.

12. Child node REST endpoints provide patches and maintenance windows to the client.

13. If target is within the Maintenance Window, then the patch is deployed to the Target.

14. Clients send state reports to the REST endpoint.

15. REST endpoints update resource assignment's states (InDesiredState, DeployedOn, PackageIsInMaintenanceWindow,
DeployedStatus) based on received report data.

16. Child Node Sync services detect the updates occurring in the CMDB.

17. Updates are detected by the parent node Sync service.

18. Parent node CMDB is updated.

19. GUI telemetry data is updated for each package and target.

RPS Components
RPS is similar to systems management suites in that it has a parent-child infrastructure of RPS servers, databases, and Windows
services. In this way, target clients that need software packages communicate with locally or geographically distributed RPS child
servers, who in turn communicate with RPS parent node servers. RPS users who build packages interact with the Parent Node
website user interface (or PowerShell) and child nodes are updated automatically. Clients register with RPS, scan for needed
updates, and RPS provides needed packages to each target client for install, via maintenance window.

RPS Servers: Parent node RPS servers and child node RPS servers that communicate with each other primarily with the RPS Sync
and CDN (Content Delivery Network) services. Child node RPS servers have a REST API endpoint listening for RPS clients that
need to communicate with the child CMDB.

CMDB Configuration Management Database: A parent/child set of databases that run on RPS parent and child servers, a sort of
"brain" for RPS.

Child Node: Child RPS servers communicate with RPS parent servers for packages and resource assignments, as well as with
clients via REST API endpoint.

Client: Target endpoint Windows computers or other devices that need RPS packages.

DSC Desired State Configuration: a service running on RPS clients (targets) that can scan, query, and remediate to the desired
configuration, via RPS users from the parent node.

Resource Assignment: The method that RPS uses to assign the packages to RPS-registered clients (targets).

Target ID: A unique identifier of the RPS registered computer client or endpoint.

Sync Service: A windows service running on RPS servers that communicates with other sync services and the CMDB.

Sync Service Settings

Last updated on December 21, 2020.

Last Reviewed and Approved on PENDING REVIEW

=================

These settings live within the Sync Service's configuration (app.config) file. Any changes to these settings would require a restart
of the Sync Service in order to take effect. It is assumed that the reader has a knowledge of how time requirements as well as the
specific functionality desired for a specific instance of RPS.

General
The configuration settings inside the Sync Service application configuration file are located in the <appSettings> section of the
document. This section will define each setting purpose and the valid values for the setting.

ContextCommandTimeout

Type: Integer

Default: 3600

Range: Any integer greater than or equal to 1. Recommended are value is 3600

Timeout, in seconds, for database calls from the Sync Service. Changing this value would alter the maximum amount of time a
database call is allowed to execute. This prevents locking the database for abnormal amounts of time.

HttpC lientT imeout

Type: Integer

Default: 3600

Range: Any integer greater than or equal to 1. Recommended are value is 3600

Timeout, in seconds, for HTTP(s) calls from the Sync Service. Changing this value would alter the amount of time a connection is
allowed to be alive for a single HTTP(s) call. This would affect both the Sync operations as well as the requests to the Fileserver
when synchronizing CDN packages

CreateC lient

Type: Boolean

Default: True

Indicates whether or not to create a client to used to synchronize data changes with to and from the current node’s parent. The
type of data synchronized when this setting is set to true includes target data, resources and properties, patch stream telemetry,
etc. If this setting is set to false, all synchronization both to and from the parent will be disabled.

Logging
The following settings are for setting specific levels of Sync Service application logging.

SyncLogs

Type: Boolean

Default: True

Remarks: If the CreateClient setting is off, these logs will not synchronize because data synchronization is turned off.

Indicates whether or not to Synchronize logs with the parent Sync Service. Setting the value to true will cause the logs on the
client to synchronize with its parent. Setting the value to false will disable this synchronization.

LogLevel

Type: Integer

Default: 4

Indicates the level of logging the sync service will use when synchronizing the logs to the parent node. When a log is made in
RPS, it is assigned a log level. When the synchronization of logs occurs, it will send all logs with a level equal to and higher than
the value set in this setting to the parent.

1. Verbose – Setting this as the value will synchronize everything logged by the Sync service
2. Debug – Contains information useful for debugging.
3. Information – Contains general information.
4. Warning – Contains warnings for the user to take note of. General indicates that a potential error may occur due to some

action taken, but its not guaranteed that it will result in an error.
5. Error – Contains information about an error that the Sync Service encountered.
6. Fatal – Contains information about a catastrophic error that usually results in the partial or total loss of the Sync Service.

API Server
This section covers settings that are specific to the rest service endpoints for the Sync Service.

CreateServer

Type: Boolean

Default: True

Indicates whether or not to start a server instance to host the Sync Api endpoints. This server is needs to be enabled on both
nodes in order to allow communications between them for both Syncing of data and CDN items. Setting this value to true will
start the REST API server internally by the Sync Service. By this value to false, calls into the SyncService via remote sources would
fail.

CDN Settings
This section contains settings for the content delivery network.

CreateC D N

Type: Boolean

Default: True

Indicates whether or not to enable the CDN indexer functionality of the Sync Service. By this option this option to true, you will
turn on the CDN and any subsequent synchronization of the CDN with a parent CDN. Setting this value to false will not start the
CDN and its synchronizations, thus stopping any new BITS transfers from occurring. This setting has no ties to enabling the file
system or api server.

I ndexerI nterval

Type: Integer

Default: 3

Range: Any integer greater than or equal to 1. Recommended are value is 3

The interval, in minutes, that the CDN will synchronize. A larger value will increase the time between synchronizations. CDN
synchronization will look at what files are currently on the system vs what files should be there. If the system is set to BITS, it will
then request any missing files from its parent and begin the download.

CDN File Server
This section covers settings that are specific to the Content Delivery Network (CDN) File Server. The CDN File Server is the
mechanism that transmits files to parent and child nodes.

CreateS taticFiles

Type: Boolean

Default: True

Indicates whether or not to start the FileServer in the Sync Service. This is required if the current node is expected to host CDN
packages and distribute them downstream. In order to enable this service both the CreateServer setting must be true AND this
setting must be true. That is because the file server endpoint is hosted in the API Server. Assuming the CreateServer setting is
enabled, setting this value to true will allow for the downstream nodes to request packages from the current node. By setting this
value to false, any requests for CDN packages by a child node will fail, stating the endpoint is not there (404 error).

FileServerOptions.RequestPath

Type: String

Default: /files

Remarks: The value MUST start with a “/” and must be a valid url

The part of the url that allows access to the CDN File Server where CDN files will be available from Sync Service. For example if
the base was www.contoso.com, and the request path was /files, the endpoint to access the file server www.contoso.com/files.

FileServerOptions.EnableD irectoryB rowsing

Type: Boolean

Default: True

Indicates whether or not to allow directory browsing of the file server. Setting this option to true will allow an individual to hit the
root file server endpoint and get the directory view for all static files (CDN files) on the node. Setting the value to false disables
this ability.

FileServerOptions.EnableD efaultF iles

Type: Boolean

Default: False

Indicates whether or not to enable default files on the file server. When this option is set to true, the server will attempt to try to
server out an index.html file when visiting the file server root. Setting this value to false will stop the attempt to serve out the
index.html file.

Sync Testing
General
The goal of this testing is to verify correct data replication between nodes in various scenarios. See the below section for an
overview of the sync scenarios and concepts which are tested.

Testing Scenarios
This section contains the scenarios for the Sync Service that are continually tested through the DevOps pipleline.

Synchronizing Upstream and D ownstream Changes

Validates that downstream and upstream changes are created at the appropriate times (not creating upstream changesets when
only downstream changes occurred, and vice versa). However, sync is a bi-directional process, and both Nodes will evaluate what
changes need to be merged when a sync occurs. These tests verify the proper creation and use of changesets between two Nodes.

Sync Versioning

Each Node keeps track of its SyncReceivedVersion and SyncSentVersion. These two Node properties are used to determine when,
and with who, a Node last synced. Additionally, Nodes also track a list of recent committed versions. This list can be used to obtain
the previous sync version of a subscriber from a distributor (the distributor being the Node where the changes were made, and
the subscriber the Node in need of the changes). The unit tests verify that this list of versions is maintained properly throughout
synchronization.

Sync Scope

These tests validate the correct adherence to SyncScopes with respect to the properties of entities such as TargetItems,
ResourceItems, etc. The five different SyncScopes are as follows:

Public -> Will Sync
Private -> Will NOT Sync
Internal -> Syncs to internal Nodes only
InternalDownStream -> Syncs to internal children only
InternalUpstream -> Syncs to internal parents only

Synchronizing Target D ata

Validates that TargetItems and TargetGroups only sync in one of two circumstances - always sync upstream, and only sync
downstream when the NodeId matches that of the target data.

Synchronizing Task Assignments

Validates that Tasking data is correctly synced both upstream and downstream. TaskMaps will sync both ways as long as the
corresponding TargetItem syncs. This is the same for TaskFilters, TaskAssignments, and dependencies. Any changes made to
Tasking data, such as updates and deletes, are also synced bi-directionally between Nodes. TaskItems with protected properties
are also synced, and the protected properties should return an IsProtected flag.

Synchronizing C reate, Read, Update, and D elete

Validates the synchronization of CRUD operations across multiple tiers (Master -> Region -> Site 1 & 2).

Synchronizing Resource D ata

Validates the correct synchronization of resource data both upstream and downstream. Resource data, such as ResourceItems,
always sync upstream. However, ResourceItems will only sync downstream if they are marked as Global, or assigned to a target
on a child node. The following cases are tested:

Synchronization of ResourceItems, ResourceGroups, and ResourceAssignments both upstream and downstream when
applicable.
The correct handling of empty ResourceGroups (which should not sync).
Synchronization of new ResourceItem properties, as well as deleted properties.

Conflict B ehavior

The following Sync conflicts and corresponding resolutions are tested:

Duplicate TargetItem name and type should rename source TargetItem
Duplicate TargetGroup name and type should rename source TargetGroup
Duplicate ResourceItem name and type should rename source ResourceItem
Duplicate ResourceGroup name and type should rename source ResourceGroup
Duplicate TargetItem property name should rename source property item
Duplicate TargetGroup property name should rename source property item
Duplicate ResourceItem property name should rename source property item
Duplicate ResourceGroup property name should rename source property item
Duplicate TaskItem should rename source item

The entity is renamed by appending a timestamp to the current name.

Synchronizing Logging

Validates the correct synchronization of logs upstream depending on log level (inclusion and exlcusion). Logs do not sync
downstream.

Sync D ependency Order

Verifies proper synchronization of dependent CRUD operations (i.e inserting a TargetItem on a Node, and subsequently deleting
it). Additionaly, these tests also validate that certain operations such as Delete are tracked based on the Sync version.

RPS Patching Script Framework
Last updated on August 26, 2021.

Document Status: Document Feature Complete as of August 26, 2021; PENDING EXTERNAL REVIEW.

This article introduces the Rapid Provisioning System (RPS) PowerShell script framework. This provides additional deployment
options over the standard deployment features available in the RPS application.

NOTE

Users may see "patch" and "package" used interchangeably in the code and log outputs during this process.

Intended Audience
This document is intended for RPS patching roles, Lead Systems Integrators (LSI), Field Service Representatives (FSR), IT staff, and
Developers. To use the framework, RPS users will need strong knowledge of PowerShell.

Use Cases
In many cases, standard RPS patching is not possible, for example:

Installing patches on appliances where PowerShell cannot directly run.
Example: a firewall appliance.

Installing patches that also need custom pre-steps and post steps.
Example: Configure custom registry values.

Installing patches for a type of patch that does not have an installer.
Example: Copying files to a location.

Installing a patch package on a target system that does not have the Local Configuration Manager (LCM) enabled.
Example: Install a patch on a system without the LCM by using script framework and setting property on that target to
say RunPackagesOnTms = $true .

Now this article can be used to build PowerShell scripts using the required PowerShell functions, introduced below.

Script Framework Requirements
RPS users with RPS accounts need to:

1. Log into a functioning RPS server.
2. Ensure their user account has the RPS patching role.
3. Launch Windows PowerShell ISE, for example.
4. Build the script needed for the use case.
5. Include the required functions defined in the table below.
6. Run the script.

PowerShell Functions
Three required RPS-specific PowerShell functions must exist when building the script, as shown in the following table:



FU NCTION NAME D ES CR IPTION R E TU R N T YPE

Test-
PackageResource This function tests if the patch is in the desired state. Must return a boolean. True for in-desired state and false

for not-in-desired state.

Set-
PackageResource This function installs or uninstalls. None

Get-
ParameterMapping

This function helps with complex mappings using
RPS-Mapped parameters.

Function will return a Hashtable for each custom
parameter it needs to map.

Next, the function Get-ParameterMapping is introduced.

Function: G et-ParameterMapping

function Get-ParameterMapping
{
 return @{
 DscEncryptionCertificate = @{
 EntityClass = 'ResourceItem'
 EntityType = 'Certificate'
 Role = 'DscEncryption'
 IsAssigned = $true
 }
 }
}

The PowerShell module can include other supporting functions and scripts as required.

Required Parameters

The Test-PackageResource and Set-PackageResource functions only have one required parameter, called Ensure. The Ensure
parameter states if the patch should be 'Present' or 'Absent'. The two methods can have any other parameters that are required
for the custom script to run using RPS-Mapped Parameters.

NOTE

For more information on RPS-Mapped Parameters, see the RPS article How to Configure RPS-Mapped Parameters.

Example Script Framework

The next example now includes the two other functions introduced above to patch VMWare ESXi.

Test-PackageResource
Set-PackageResource

$null = Import-Module -Name 'VMware.PowerCLI'
$null = Set-PowerCLIConfiguration -InvalidCertificateAction Ignore -Confirm:$false -ErrorAction SilentlyContinue -DefaultVIServerMode
Multiple -ParticipateInCEIP $false -Scope Session

function Test-PackageResource
{
 [CmdletBinding()]
 Param
 (
 [Parameter(Mandatory = $true)]
 [ValidateScript({[ipaddress]::Parse($_)})]
 [string]
 $IPAddress,



 [Parameter(Mandatory = $true)]
 [string]
 $ComputerName,

 [Parameter(Mandatory = $true)]
 [PSCredential]
 $LocalAdmin,

 [Parameter(Mandatory = $true)]
 [string]
 $Ensure
)

 Write-Verbose "Connecting to ESXi at $IPAddress"

 $server = Connect-ViServer -Server $IPAddress -Credential $LocalAdmin -WarningAction SilentlyContinue -ErrorAction Stop

 $virtualSwitches = Get-VirtualSwitch -Name 'PatchedVirtualSwitch' -ErrorAction SilentlyContinue
 if($virtualSwitches)
 {
 if ($ensure -eq 'present')
 {
 return $true
 }
 else
 {
 return $false
 }
 }

 if ($ensure -eq 'Absent')
 {
 return $true
 }
 return $false

 Write-Verbose "Connected to ESXi at $IPAddress"
}

function Set-PackageResource
{
 [CmdletBinding()]
 Param
 (
 [Parameter(Mandatory = $true)]
 [ValidateScript({[ipaddress]::Parse($_)})]
 [string]
 $IPAddress,

 [Parameter(Mandatory = $true)]
 [string]
 $ComputerName,

 [Parameter(Mandatory = $true)]
 [PSCredential]
 $LocalAdmin,

 [Parameter(Mandatory = $true)]
 [string]
 $Ensure

)
 $server = Connect-ViServer -Server $IPAddress -Credential $LocalAdmin -WarningAction SilentlyContinue -ErrorAction Stop
 if ($ensure -eq 'Present')
 {
 New-VirtualSwitch -Server $server -Name 'PatchedVirtualSwitch' -ErrorAction SilentlyContinue

 New-VirtualSwitch -Server $server -Name 'PatchedVirtualSwitch' -ErrorAction SilentlyContinue
 }
 else
 {
 $vs = Get-VirtualSwitch -Server $server -Name 'PatchedVirtualSwitch'
 $vs | Remove-VirtualSwitch -Server $server -ErrorAction SilentlyContinue -Confirm:$false
 }
 Write-Verbose "Connecting to ESXi at $IPAddress"
}

Sample parameter mapping. We are not using any complex parameters in this script.
function Get-ParameterMapping
{
 @{
 DscEncryptionCertificate = @{
 EntityClass = 'ResourceItem'
 EntityType = 'Certificate'
 Role = 'DscEncryption'
 IsAssigned = $true
 }
 }
}

Windows Installer Patch (.msp) Example - Deprecated in 4.0
IMPORTANT

This example is deprecated from the RPS 4.0 C:\ContentStore\Packaging folder, but will still exist in older RPS 3.1 servers. For RPS 4.0 servers,
build .msp style patches using the RPS application.

How I t Works

The example below will install .msp patches on any RPS Windows target, configured with the patch stream Desired State
Configuration (DSC) feed resource.

The packaged script and .msp will be used to ensure the state of the target.

The PowerShell script will need to be constructed in a way to be able to test the current state and if necessary, set the
configured state of the patch.

The number of different parameters needed to install the patch determines how complex the packaged script will be.

For most .msp installs, the only required parameter will be the 'Ensure' property. This parameter will control whether the
patch is installed or uninstalled during set operations and used to test the current state for test operations.

Windows I nstaller Requirements

For scripted patch streams and patches to execute, clients and targets must be declared, with the RPS feed resource configured
through Desired State Configuration (DSC).

Patch File Components

In order to use this framework to install a .msp style patch, the file layout should include each of the following components:

NOTE

Examples of the Package.RPS (manifest) file and the ExampleMspInstall.ps1 PowerShell script can be found below in this section.

ExampleMspInstall_1.0.0.zip





1. Package.RPS
2. ExampleMspInstall.ps1

3. ExampleProgram.msp

Figure 1: File Explorer view of the contents of an RPS .msp file layout.

1 . Package.R P S

Use Notepad to create a patch manifest file below with a file name of Package.RPS. The manifest file is used by the script to install
the patch. Later in the manifest, at the ExecutableName tag, provide a name of .msp to be installed. Both the manifest file and the
script below must be zipped.

NOTE

The InstallerFileName should match the PowerShell script file name (ExampleMspInstall.ps1 in our example) and the Product Type should be set
to "ScriptFramework".

The following is an example of a Package.RPS file that can be modified as required. Notice the use of the RPS cmdlet "Get-
RpsAuditEntry" from the RPS-API module.



<?xml version="1.0" encoding="utf-8"?>
<PackageManifest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<PackageName>ExampleMspInstall</PackageName>
<PackageVersion>1.0.0</PackageVersion>
<Description>This is a test patch</Description>
<OsVersion>*</OsVersion>
<Architecture>x64</Architecture>
<OsType>Windows</OsType>
<MsCatalogProductName>ScriptFrameWorkTest1</MsCatalogProductName>
<MsCatalogTitle />
<MsCatalogId />
<Products />
<MsCatalogUpdateId />
<PackageClassification>General</PackageClassification>
<MsCatalogSupercededByKbIds />
<MsCatalogLinkUrls />
<UninstallArguments>/s</UninstallArguments>
<InstallArguments />
<SupressReboot>true</SupressReboot>
<ProductName>ExampleMspInstall</ProductName>
<ProductType>ScriptFramework</ProductType>
<ProductVersion>1.0.0</ProductVersion>
<ProductId>{null}</ProductId>
<InstallerFileName>ExampleMspInstall.ps1</InstallerFileName>
<ExecutableName>ExampleMspInstall.msp</ExecutableName>
</PackageManifest>

2. ExampleMspInstall.ps1

Use this example PowerShell script to install the .msp style patch using the manifest file defined above.

For the first two variables:

Ensure that the file names and values match those defined in the manifest file above.
These values will be used by the script to ensure either the program is installed or uninstalled from the local system.

Also take note of the two functions embedded in the script:

1. Function Set-PackageResource
2. Function Test-PackageResource
3. The Get-ParameterMapping function is for future use and should always return an empty hashtable.

The following script is file-named ExampleMspInstall.ps1 that can be modified for actual use.

Ensure the following two variables match the manifest file.
$Path = "$PSScriptRoot\Package.RPS"
$XPath = "/PackageManifest"
$script:xml = Select-Xml -Path $Path -XPath $Xpath

function Set-PackageResource
{
 [CmdletBinding()]
 param
 (
 [Parameter(Mandatory = $true)]
 [ValidateSet('Present','Absent')]
 [System.String]
 $Ensure
)

 try
 {
 if ($ensure -eq 'Present')
 {

 {
 Write-Verbose $('Installing MSP {0}' -f $script:xml.Node.ExecutableName)
 $arguments = '/p "{0}" /quiet /norestart' -f "$PSScriptRoot\$($script:xml.Node.ExecutableName)"
 $result = Invoke-ManagedProcess -Program "$env:winDir\system32\msiexec.exe" -Arguments $arguments
 }
 else
 {
 Write-Verbose $('Uninstalling MSP {0}' -f $script:xml.Node.ExecutableName)
 $packageSettings = Get-Package -Name $script:xml.Node.ProductName -RequiredVersion $script:xml.Node.ProductVersion -
ProviderName msi,programs
 $packageSettings = $packageSettings | Select-Object -First 1
 $result = Invoke-ManagedProcess -Program $packageSettings.Metadata.Item('UninstallString') -Arguments '/s'
 }
 }
 catch
 {
 Write-Warning "$_"
 }
}

function Test-PackageResource
{
 [CmdletBinding()]
 param
 (
 [Parameter(Mandatory = $true)]
 [ValidateSet('Present','Absent')]
 [System.String]
 $Ensure
)

 try
 {
 Write-Verbose $('Testing state of MSP {0}' -f $script:xml.Node.ExecutableName)
 $params = @{
 Name = $script:xml.Node.ProductName
 RequiredVersion = $script:xml.Node.ProductVersion
 ProviderName = 'msi','Programs'
 ErrorAction = 'SilentlyContinue'
 }
 $packageResult = Get-Package @params

 if ($packageResult -and $Ensure -eq 'Present')
 {
 return $true
 }
 else
 {
 return $false
 }
 }
 catch
 {
 return $false
 }
}

function Get-ParameterMapping
{
 return @{}
}

Installing Multiple Windows Hotfix (MSU) Files: Example

How I t Works

The example below will install multiple .msu (hotfix) files on RPS Windows target(s).

The PowerShell script.ps1 and .msu (hotfix) files will be used to ensure the state of each target.
The PowerShell script.ps1 file will need to be constructed in a way to be able to test the current state and, if necessary, set
the configured state of the patch.

The example consists of two pieces:

An example Package.RPS manifest file that describes the Script Framework script that will kick off the patching process.
An example script.ps1 PowerShell script that provides an example Script Framework script that installs multiple .msu (hotfix)
files.

NOTE

Both of the above example files, the Package.RPS manifest file and the script.ps1 PowerShell script, will need to be modified to user requirements
of the specific patching scenario.

The Package.RPS manifest should be modified so that it provides correct information about the bundle of .msu (hotfix) files that will be
contained in the patch.

The script.ps1 PowerShell script should be modified by changing the value of the $patches variable at the top of the script to contain
correct information about the .msu (hotfix) files that will be deployed. This includes correct information such as: ProductId (the KB number),
Filepath (path to the msu within the patch ZIP - if it is at the root of the patch ZIP then the filename of the msu will suffice), and Ensure
(Present or Absent, which designates whether the msu should be installed or removed).

After the Package.RPS manifest file and the script.ps1 have been modified and verified as correct, create a ZIP archive that
contains:

The Package.RPS manifest file
The .msu (hotfix) files
the script.ps1 PowerShell file

The ZIP file should follow the naming convention based on the values in the Package.RPS manifest file:
<ProductName><ProductVersion>.zip . For example: "MyWindowsUpdates1.0.0.zip".

Windows I nstaller Requirements

For scripted patch streams and patches to execute, clients and targets must be declared, with the RPS feed resource configured
through Desired State Configuration (DSC).

Patch Manifest - Package.R P S



<?xml version="1.0" encoding="utf-8"?>
<PackageManifest version="1.0">
 <PackageName>MultipleMSU</PackageName>
 <PackageVersion>1.0.0</PackageVersion>
 <Description>This example patch will install multiple MSU files.</Description>
 <OsVersion>*</OsVersion>
 <Architecture>*</Architecture>
 <OsType>Windows</OsType>
 <PackageClassification>General</PackageClassification>
 <UninstallArguments />
 <InstallArguments />
 <SuppressReboot>true</SuppressReboot>
 <ProductName />
 <ProductType>ScriptFramework</ProductType>
 <ProductVersion />
 <ProductId />
 <InstallerFileName>multiple_msu.ps1</InstallerFileName>
</PackageManifest>

Script Framework Script - script.ps1

$patches = @(
 @{
 ProductId = "KB4601050" #Product ID (KB number) of the MSU/Hotfix
 Filepath = Join-Path -Path $PSScriptRoot -ChildPath "KB4601050.msu" #fully qualified path to the MSU/Hotfix file
 Ensure = "Present" #Present or Absent
 },
 @{
 ProductId = "KB4601051" #Product ID (KB number) of the MSU/Hotfix
 Filepath = Join-Path -Path $PSScriptRoot -ChildPath "KB4601051.msu" #fully qualified path to the MSU/Hotfix file
 Ensure = "Present" #Present or Absent
 },
 @{
 ProductId = "KB4601052" #Product ID (KB number) of the MSU/Hotfix
 Filepath = Join-Path -Path $PSScriptRoot -ChildPath "KB4601052.msu" #fully qualified path to the MSU/Hotfix file
 Ensure = "Present" #Present or Absent
 }
)

function Test-PatchResource
{
 [CmdletBinding()]
 param()

 Write-Verbose -Message 'Started testing patches'

 $result = $true
 foreach($patch in $patches)
 {
 Write-Verbose -Message "Testing state for patch $($patch.ProductId)"

 $patchId = $patch.ProductId.ToLower().Replace("kb", "")
 $hotfix = Get-Hotfix -Id $patchId -ErrorAction SilentlyContinue

 if ($patch.Ensure -eq 'Present' -and $null -eq $hotfix)
 {
 Write-Verbose -Message "Patch $($patch.ProductId) is not in desired state. Patch is not installed"
 $result = $false
 }
 elseif ($Patch.Ensure -eq 'Absent' -and $null -ne $hotfix)
 {
 Write-Verbose -Message "Patch $($patch.ProductId) is not in desired state. Patch is installed"
 $result = $false
 }
 else

 else
 {
 Write-Verbose -Message "$($patch.ProductId) is in desired state."
 }
 }

 Write-Verbose -Message 'Finished testing patches'

 return $result
}

function Set-PatchResource
{
 [CmdletBinding()]
 Param
 (
)

 Write-Verbose 'Started installing patches'

 foreach($patch in $patches)
 {
 $hotfix = Get-Hotfix -Id $patch.ProductId -ErrorAction SilentlyContinue

 if ($patch.Ensure -eq 'Present' -and $null -eq $hotfix)
 {
 Write-Verbose -Message "Installing $($patch.ProductId)"

 $arguments = '"{0}" /quiet /norestart' -f $patch.Filepath
 $result = Invoke-ManagedProcess -Program "$env:winDir\system32\wusa.exe" -Arguments $arguments

 if ($result -eq 0)
 {
 Write-Verbose -Message "Finished installing $($patch.ProductId)"
 }
 else
 {
 Write-Verbose -Message "Error installing $($patch.ProductId)"
 }
 }
 elseif ($patch.Ensure -eq 'Absent' -and $null -ne $hotfix)
 {
 Write-Verbose -Message "Uninstalling $($patch.ProductId)"

 $updateId = $($patch.ProductId) -ireplace [regex]::Escape('KB'), ''
 $arguments = '/uninstall /KB:{0} /quiet /norestart' -f $updateId
 $result = Invoke-ManagedProcess -Program "$env:winDir\system32\wusa.exe" -Arguments $arguments

 if ($result -eq 0)
 {
 Write-Verbose -Message "Finished uninstalling $($patch.ProductId)"
 }
 else
 {
 Write-Verbose -Message "Error uninstalling $($patch.ProductId)"
 }
 }
 else
 {
 Write-Verbose -Message "$($patch.ProductId) is in desired state."
 }
 }

 Write-Verbose 'Finished installing patches'
}

function Invoke-ManagedProcess
{
 [Cmdletbinding()]
 [OutputType([System.Uint32])]
 param
 (
 [Parameter(Mandatory = $true)]
 [System.String]
 $Program,

 [Parameter()]
 [System.String]
 $Arguments = '',

 [Parameter()]
 [System.Uint16]
 $IdleTimeout = 60
)

 $processInfo = New-Object System.Diagnostics.ProcessStartInfo
 $processInfo.FileName = $Program
 $processInfo.RedirectStandardError = $true
 $processInfo.RedirectStandardOutput = $true
 $processInfo.UseShellExecute = $false
 $processInfo.Arguments = $Arguments
 $managedProcess = New-Object System.Diagnostics.Process
 $managedProcess.StartInfo = $processInfo
 $managedProcess.Start() | Out-Null

 while (Get-Process -Id $managedProcess.ID -ErrorAction SilentlyContinue)
 {
 Test-TaskTimeOut -Process $managedProcess -IdleTimeout $IdleTimeOut
 }

 return $managedProcess.ExitCode
}

function Test-TaskTimeOut
{
 [CmdletBinding()]
 param
 (
 [Parameter(Mandatory = $true)]
 [PSObject]
 $Process,

 [Parameter()]
 [System.Uint16]
 $IdleTimeOut = 60
)

 if ($null -eq $memUsageStack)
 {
 $script:memUsageStack = New-Object -TypeName System.Collections.Stack
 }

 if ($IdleTimeout -gt 0)
 {
 $lastMemUsageCount = Get-ProcessTreeMemoryUsage -ProcessId $Process.ID
 $memUsageStack.Push($lastMemUsageCount)
 if ($lastMemUsageCount -eq 0 -or ($null -ne ($memUsageStack.ToArray() | Where-Object -FilterScript { $_ -ne $lastMemUsageCount
})))
 {
 if (-not (Get-Process -Id $Process.ID -ErrorAction SilentlyContinue))
 {
 break

 break
 }

 $memUsageStack.Clear()
 }
 if ($memUsageStack.Count -gt $IdleTimeOut)
 {
 Stop-Process -Id $Process.ID
 }
 }

 Start-Sleep -Second 1
}

function Get-ProcessTreeMemoryUsage
{
 [CmdletBinding()]
 [OutputType([System.Uint64])]
 param
 (
 [Parameter(Mandatory = $true)]
 [System.Uint32]
 $ProcessId
)

 $ReservedMemory = 0

 $childProcessObject = Get-CimInstance Win32_Process -Filter "ParentProcessID=$ProcessId" -Verbose:$false
 if ($childProcessObject)
 {
 foreach ($processObject in $childProcessObject)
 {
 if ($null -ne $processObject.ProcessID)
 {
 $currentProcess = Get-Process -ID $processObject.ProcessID -ErrorAction SilentlyContinue
 $ReservedMemory += $currentProcess.PrivateMemorySize + $currentProcess.WorkingSet
 $ReservedMemory += (Get-ProcessTreeMemoryUsage -ProcessId $processObject.ProcessID)
 }
 }
 }
 else
 {
 $currentProcess = Get-Process -ID $ProcessId -ErrorAction SilentlyContinue

 if ($currentProcess)
 {
 $ReservedMemory += $currentProcess.PrivateMemorySize + $currentProcess.WorkingSet
 }
 else
 {
 $ReservedMemory = 0
 }
 }

 return $ReservedMemory
}

RPS Patch Manifest Definition
Last updated on August 11, 2021.

Document Status: Document Feature Complete as of August 11, 2021; PENDING EXTERNAL REVIEW.

This document describes the patch manifest of the Rapid Provisioning System (RPS).

NOTE

The word "package" is used instead of "patch" within the manifest XML to maintain backwards compatibility with RPS v3.1.

Users may see "patch" and "package" used interchangeably in the code and log outputs during this process.

What is the Patch Manifest File
When creating the ZIP file that houses all the data needed to install a patch, there also needs to be a patch manifest file created
with the patch. It is used by RPS to apply the patches and to determine what targets are to receive the patches.

The manifest file lives at the root level of the ZIP archive and is named Package.RPS. It contains information such as the Operating
System (OS) Type, OS Architecture, patch name, etc.

IMPORTANT

Patch names must begin with a letter to be valid. They cannot start with a number or special character.

Structure of the Patch Manifest File
The internal structure of the patch manifest file is JSON with XML, containing a predetermined set of elements. The values
contained in these elements will be the details applied to the patch and used to transfer, apply, and manage the patches on an
RPS enabled system.

IMPORTANT

Any XML element that has a String field must have the first letter of "String" capitalized for this field to be valid. Example:
<String>Windows 10</String>







<?xml version="1.0" encoding="utf-8"?>
<PackageManifest version="1.0">
 <Architecture></Architecture>
 <Conditions>
 <PackageAssignmentCondition>
 <Property />
 <Operator />
 <Value />
 </PackageAssignmentCondition>
 </Conditions>
 <DependsOn />
 <Description></Description>
 <InstallArguments />
 <InstallerFileName></InstallerFileName>
 <Miscellaneous />
 <MsCatalogId />
 <MsCatalogLinkUrls />
 <MsCatalogProductName></MsCatalogProductName>
 <MsCatalogSupercededByKbIds />
 <MsCatalogTitle />
 <MsCatalogUpdateId />
 <OsType></OsType>
 <OsVersion></OsVersion>
 <PackageClassification></PackageClassification>
 <PackageName></PackageName>
 <PackageVersion></PackageVersion>
 <ProductId></ProductId>
 <ProductName></ProductName>
 <ProductType></ProductType>
 <ProductVersion></ProductVersion>
 <Products />
 <Supersedes>
 <String>PackageName/PackageVersion</String>
 </Supersedes>
 <SuppressReboot></SuppressReboot>
 <UninstallArguments></UninstallArguments>
</PackageManifest>

Patch Manifest XML Attributes
Version Attribute

Type: String

IsRequired: Yes

The version of the patch manager that will process this manifest file.

Currently, the following version(s) exist:

1.0

<PatchManifest version="1.0">

Patch Manifest XML Elements
Architecture E lement

Type: String

IsRequired: Yes

The architecture of the operating system to whom the patch is applicable. A wildcard (*) can be passed in to target any OS
version. Acceptable values are:

x86

x64

*

NOTE

The patch will only be assigned to targets that have an Architecture value that passes the match test on this element, in addition to the OsType
and OsVersion values.

Condit ions E lement

Type: Collection of PackageAssignmentCondition

IsRequired: No

A collection of custom conditions for filtering patch assignments to a target.

<Conditions>
 <PackageAssignmentCondition>
 <Property>IsApp</Property>
 <Operator>Eq</Operator>
 <Value>True</Value>
 </PackageAssignmentCondition>
 </Conditions>

IMPORTANT

The fields inside the PackageAssignmentCondition must be in the following order to be valid:

<Property></Property>
<Operator></Operator>
<Value></Value>

Known I ssue

Patch manifest Conditions element Value field does not support multiple values separated by the pipe delimiter |

Error Details: The following PackageManifest code snippet is an example using pipe delimiter | in Conditions , which will fail:

<InstallerFileName>opera.msi</InstallerFileName>
<Conditions>
 <PackageAssignmentCondition>
 <Property>Name</Property>
 <Operator>Eq</Operator>
 <Value>ad.unit.domain|nosc.local.rps</Value>
 </PackageAssignmentCondition>
</Conditions>

The resulting behavior: Only the first value listed in the Value field will receive an assignment; all other values after the
pipe delimiter | are ignored.





Figure 1: Pipe delimiter error example.

In the above example, ad.unit.domain is assigned the opera patch, because it was listed before the pipe delimiter | .
nosc.local.rps is not assigned the opera patch, because it was listed after the pipe delimiter | .

Current Workaround for pipe delimiter | : Utilize the Match Operator field <Operator>Match</Operator> , with each value
in the Value field wrapped in parentheses () and with a trailing question mark ? . Example:

<Conditions>
 <PackageAssignmentCondition>
 <Property>ComputerName</Property>
 <Operator>Match</Operator>
 <Value>(NFA)?(WNM)?(WNMA)?</Value>
 </PackageAssignmentCondition>
</Conditions>

In the above example, a target with a Property of ComputerName will be assigned if its Value contains NFA, WNM, and/or
WNMA. This implementation only requires a partial value match.

For an exact value match, the full string in the Value field must be enclosed with a caret ^ and a dollar sign $. Example:

<Conditions>
 <PackageAssignmentCondition>
 <Property>ComputerName</Property>
 <Operator>Match</Operator>
 <Value> (̂NFA)?(WNM)?(WNMA)?$</Value>
 </PackageAssignmentCondition>
</Conditions>

In the above example, a target with a Property of ComputerName will be assigned if its Value contains NFA, WNM, and
WNMA.

DependsOn E lement

Type: Collection of Strings

IsRequired: No

A collection of products a patch depends on. The value is in the format of ProductName/ProductVersion.

<DependsOn>
 <String>Patch1/1.0.0</String>
 <String>Patch2/1.5.2</String>
</DependsOn>

Descript ion E lement

Type: String

IsRequired: No

A description of the patch and what it is installing.

I nstallArguments E lement

Type: String

IsRequired: No

Arguments passed in when executing the InstallerFileName in order to install the patch.

I nstallerFileName E lement

Type: String

IsRequired: Yes

The name of the file inside of the patch ZIP archive that should be executed to begin the install/uninstall process. This file must
live at the root of the patch.

Miscellaneous E lement

Type: Collection of Strings

IsRequired: No

Allows extra information to be stored in a patch manifest. Any child element(s) can be added to the Miscellaneous element.

<Miscellaneous>
 <CreatedByUser>myUserName</CreatedByUser>
 <CreatedOnDate>4/21/2020 12:00:00 PM</CreatedOnDate>
</Miscellaneous>

MsCatalogI d E lement

Type: String

IsRequired: No

The catalog ID of the patch. Used/Populated by updates that come from the Microsoft Catalog.

MsCatalogL inkUrls E lement

Type: Collection of Strings

IsRequired: No

The catalog link URLs for the patch. Used/Populated by updates that come from the Microsoft Catalog.

<MsCatalogLinkUrls>
 <String>https://www.catalog.update.microsoft.com/ScopedViewInline.aspx?updateid=db57861b-e22b-4107-8c78-1ae8d63310d2</String>
 <String>https://www.catalog.update.microsoft.com/ScopedViewInline.aspx?updateid=567d7a0d-7f11-4c75-ba80-e7dd1b88fbe3</String>
 <String>https://www.catalog.update.microsoft.com/ScopedViewInline.aspx?updateid=5f46c0b9-c57c-484e-b6e5-80dded34bfa3</String>
</MsCatalogLinkUrls>

MsCatalogP roductName E lement

Type: String

IsRequired: No

The catalog product name of the patch. Used/Populated by updates that come from the Microsoft Catalog.

MsCatalogSupercededByKbI ds E lement

Type: Collection of Strings

IsRequired: No

The catalog IDs of KBs that supersede the patch. Used/Populated by updates that come from the Microsoft Catalog.

<MsCatalogSupercededByKbIds>
 <String>4532693</String>
 <String>4532695</String>
 <String>4528760</String>
</MsCatalogSupercededByKbIds>

MsCatalogT it le E lement

Type: String

IsRequired: No

The catalog title of the patch. Used/Populated by updates that come from the Microsoft Catalog.

MsCatalogUpdateI d E lement

Type: String

IsRequired: No

The catalog update ID of the patch. Used/Populated by updates that come from the Microsoft Catalog.

OsType E lement

Type: String

IsRequired: Yes

The type of the operating system. The supported values are:

Windows

Linux

NOTE

The patch will only be assigned to targets that have an OsType value that passes the match test on this element, in addition to the Architecture
and OsVersion values.

OsVersion E lement

Type: String

IsRequired: Yes

The version of the operating system to whom the patch is applicable. A wildcard (*) can be passed in to target any OS version.
Partial wildcard matching is also allowed, which means it will match the values before and after the wildcard.

For example:

10.* would match 10.0.0.2, 10.2, etc., because they all start with "10.".

*.1 would match 10.0.1, 10.1, etc because they all end with ".1".

NOTE





The patch will only be assigned to targets who have an OsVersion value that passes the match test on this element, in addition to the
Architecture and OsType values.

PackageC lassification E lement

Type: String

IsRequired: Yes

The classification of the patch. Accepted values are:

Critical

Definition

General

New

Script

Security

PackageName E lement

Type: String

IsRequired: Yes

The name of the patch to be used by RPS. This name is used in combination with the PackageVersion element to create a unique
name.

PackageVersion E lement

Type: String

IsRequired: Yes

The version of the patch to be used by RPS. This name is used in combination with the PackageName element to create a unique
name. The value stored in here typically follows Semantic Versioning (e.g., 1.0.0).

P roduct I d E lement

Type: String

IsRequired: Yes, if ProductType is WindowsCabinet, WindowsExe, WindowsHotfix, WindowsMsi, or WindowsMsp.

The ID of the product. Used when registering the product with the OS, if needed.

P roductName E lement

Type: String

IsRequired: Yes, if ProductType is WindowsExe, WindowsMsi, or WindowsMsp.

The name of the product. Used when registering the product with the OS, if needed.

P roductType E lement

Type: String

IsRequired: Yes

The type of product. Determines the type of patch being installed.

Acceptable values are:

LinuxRpm

ScriptFramework

WindowsCabinet

WindowsExe

WindowsHotfix

WindowsMsi

WindowsMsp

P roductVersion E lement

Type: String

IsRequired: Yes, if ProductType is WindowsExe, WindowsMsi, or WindowsMsp.

The Version of the product. Used when registering the patch with the OS, if needed.

P roducts E lement

Type: Collection of Strings

IsRequired: No

A collection of products a patch affects/supports. For example, a Windows update might patch Windows 10 and Visual Studio.

<Products>
 <String>Windows 10</String>
 <String>Visual Studio</String>
</Products>

Supersedes E lement

Type: Collection of Strings

IsRequired: No

A collection of products a patch supersedes. The value is in the format of ProductName/ProductVersion.

<Supersedes>
 <String>Patch1/1.0.0</String>
 <String>Patch2/1.5.2</String>
</Supersedes>

SuppressReboot E lement

Type: Boolean (True/False)

IsRequired: Yes

Determines whether or not the machine should reboot after installing/uninstalling the patch.

If True, the machine should not reboot. If False, the machine should reboot.

UninstallArguments E lement

Type: String

IsRequired: No

Arguments passed in when executing the InstallerFileName in order to uninstall the patch.

PackageManifest Examples
3 Par ty Application Patch Manifest

Example of a manifest used to install Firefox to a Windows machine:

<?xml version="1.0" encoding="utf-8"?>
<PackageManifest version="1.0">
 <Architecture>x64</Architecture>
 <Description>This will install Firefox v70 on all Windows x64 bit machines</Description>
 <InstallArguments />
 <InstallerFileName>firefox.msi</InstallerFileName>
 <MsCatalogId />
 <MsCatalogLinkUrls />
 <MsCatalogProductName>Firefox70</MsCatalogProductName>
 <MsCatalogSupercededByKbIds />
 <MsCatalogTitle />
 <MsCatalogUpdateId />
 <OsType>Windows</OsType>
 <OsVersion>*</OsVersion>
 <PackageClassification>General</PackageClassification>
 <PackageName>Firefox</PackageName>
 <PackageVersion>1.0.0</PackageVersion>
 <ProductId>{74994757-3b19-4c54-afe4-ae84e398a3f7}</ProductId>
 <ProductName>Mozilla Firefox 70.0 (x64 en-US)</ProductName>
 <ProductType>WindowsMsi</ProductType>
 <ProductVersion>70.0</ProductVersion>
 <Products />
 <Supersedes>
 <String>Firefox/0.9.0</String>
 </Supersedes>
 <SuppressReboot>true</SuppressReboot>
 <UninstallArguments>/s</UninstallArguments>
</PackageManifest>

Linux Software Patch Manifest

Example of a manifest used to install Socat to a Linux machine:

rd

<?xml version="1.0" encoding="utf-8"?>
<PackageManifest version="1.0">
 <Architecture>x64</Architecture>
 <Description>This contains the install for Socat</Description>
 <InstallArguments />
 <InstallerFileName>socat-1.7.3.2-2.el7.x86_64.rpm</InstallerFileName>
 <OsType>Linux</OsType>
 <OsVersion>*</OsVersion>
 <PackageClassification>General</PackageClassification>
 <PackageName>socat</PackageName>
 <PackageVersion>1.7.3.2</PackageVersion>
 <ProductId>socat</ProductId>
 <ProductName>socat</ProductName>
 <ProductType>LinuxRpm</ProductType>
 <ProductVersion>1.7.3.2</ProductVersion>
 <Products />
 <UninstallArguments>/s</UninstallArguments>
 <SuppressReboot>true</SuppressReboot>
</PackageManifest>

Appliance Patch Manifest

Example of a manifest used to update an ESX environment:

<?xml version="1.0" encoding="utf-8"?>
<PackageManifest version="1.0">
 <Architecture>x64</Architecture>
 <Description>This is a test patch</Description>
 <InstallArguments />
 <InstallerFileName>windows8.1-kb4519990-x64.msu</InstallerFileName>
 <MsCatalogId />
 <MsCatalogLinkUrls />
 <MsCatalogSupercededByKbIds />
 <MsCatalogProductName>kb4519990</MsCatalogProductName>
 <MsCatalogTitle />
 <MsCatalogUpdateId />
 <OsType>Windows</OsType>
 <OsVersion>*</OsVersion>
 <PackageClassification>General</PackageClassification>
 <PackageName>windows8.1-kb4519990-x64</PackageName>
 <PackageVersion>2019.10.8</PackageVersion>
 <ProductId>kb4519990</ProductId>
 <ProductName>windows8.1-kb4519990-x64</ProductName>
 <ProductType>WindowsHotfix</ProductType>
 <ProductVersion>2019.10.8</ProductVersion>
 <Products />
 <SuppressReboot>false</SuppressReboot>
 <UninstallArguments>/s</UninstallArguments>
</PackageManifest>

Get-RpsPatchManifest
The cmdlet Get-RpsPatchManifest will return the XML schema for the patch manifest file. The cmdlet takes one optional parameter:
Version .

Version : Optional. Used to specify a patch manifest version to validate against. If this parameter is not provided, this cmdlet
will return the most current version of the manifest schema.

NOTE

Currently the only valid value for Version is 1.0 .



$currentSchema = Get-RpsPatchManifest

Test-RpsPatchManifest
The cmdlet Test-RpsPatchManifest will take the path to a patch manifest file and validate the file XML format. The cmdlet takes two
parameters: PatchFilePath and, optionally, SchemaVersion .

PatchFilePath : Required. Provides the path to the patch manifest file to be validated.

SchemaVersion : Optional. Used to specify a patch manifest version to validate against. If this parameter is not provided, the
latest version of the manifest schema will be used to perform the validation.

NOTE

Currently the only valid value for SchemaVersion is 1.0 .

If the manifest is valid, Test-RpsPatchManifest will return true. If the manifest is invalid, Test-RpsPatchManifest will return false,
with a list of validation exceptions.

$result = Test-RpsPatchManifest -PatchFilePath C:\patch\manifest.xml



New Configurations for CDN
Last updated on September 1, 2021.

Document Status: Document Feature Complete as of September 1, 2021; PENDING EXTERNAL REVIEW.

Overview
The following document describes the configuration changes from RPS v3.1 to v4.0.0 and provides a PowerShell script which can
be executed by the LSI when implementing a new RPS deployment.

Script

We no longer need DSC resource Rps_xDFSR
$contentStoreBasePath = <Content Store Base Path>
Remove-Item (Join-Path $contentStoreBasePath -ChildPath "DSC\Modules\RPS_xDFSR") -Recurse

The 'WebApiServiceAccount' needs to belong to the 'DFSRAdministrators' group
Add-ADGroupMember -Identity DFSRAdministrators -Members WebApiServiceAccount

New Active Directory configurations for 'DFSRAdministrators' group
$domain = Get-RpsResourceItem -Type ADDomain -Name <domain name>
$accessEntryName = "CN=Computers,$($domain.Path)"

$accessEntry = New-RpsResourceItem -Type $Rps.ResourceTypes.ADAccessEntry -Name $accessEntryName -Properties @{
 DistinguishedName = $accessEntryName
}

$accessControlList = New-RpsResourceItem -Type $Rps.ResourceTypes.ADAccessControlList -Name 'CN=Computers-
AdAccessControlList1' -Parent $accessEntry -Properties @{
 Principal = 'DFSRAdministrators'
}

$null = New-RpsResourceItem -Type $Rps.ResourceTypes.ADAccessRule -Name 'CN=Computers-ADAccessRule3' -Parent
$accessControlList -Properties @{
 AccessControlType = 'Allow'
 ActiveDirectoryRights = 'GenericAll'
 InheritanceType = 'Descendents'
 InheritedObjectType = 'ms-DFSR-LocalSettings'
 ObjectType = ''
 Ensure = 'Present'
}
$null = New-RpsResourceItem -Type $Rps.ResourceTypes.ADAccessRule -Name 'CN=Computers-ADAccessRule4' -Parent
$accessControlList -Properties @{
 AccessControlType = 'Allow'
 ActiveDirectoryRights = 'CreateChild,DeleteChild'
 InheritanceType = 'Descendants'
 InheritedObjectType = 'Computer'
 ObjectType = 'ms-DFSR-LocalSettings'
 Ensure = 'Present'
}

NOTE

The DFSRAdmin user account is no longer required and can be removed from the CMDB.



RPS Package Provider
Last updated on April 30, 2021.

Last Reviewed and Approved on PENDING REVIEW

The RPS Package Provider is a PowerShell module that provides RPS with the ability to Connect and find, download, test, and
install patches.

How the Package Provider tests or installs a patch depends on the patch's product type. For more information on the product
types see: RPS Patch Product Types

Table of Contents
WindowsHotfix
WindowsMsi
WindowsMSP
WindowsCabinet
WindowsExe
LinuxRpm
ScriptFramework

WindowsHotfix
To test if a WindowsHotfix patch is installed the following command is used by the Package Provider:

Get-Hotfix -Id <ProductId> -ErrorAction SilentlyContinue

ProductId - The product id from the patch manifest, which is the unique identifier of the product.

To install a WindowsHotfix patch the following command is used by the Package Provider:

wusa.exe "<Path to installer executable>" /quiet /norestart

Path to installer executable - this is the path to the actual file that kicks off the install process.
For example: C:\packages\MyPatch1.0.0\installer.exe

WindowsMsi
To test if a WindowsMsi patch is installed the following command is used by the Package Provider:

 $params = @{
 Name = "<ProductName>"
 RequiredVersion = "<ProductVersion>"
 ProviderName = 'programs','msi'
 ErrorAction = 'SilentlyContinue'
 }
 Get-Package @params

ProductName - The product name from the patch manifest that identifies the name of the installed product.
ProductVersion - The product version from the patch manifest that identifies the version of the installed product.

To install a WindowsMsi patch the following command is used by the Package Provider:

msiexec.exe /i "<Path to installer msi>" /quiet /norestart

Path to installer msi - this is the path to the actual file that kicks off the install process
For example: C:\packages\MyPatch1.0.0\installer.msi

WindowsMsp
To test if a WindowsMsp patch is installed the following command is used by the Package Provider:

 $params = @{
 Name = "<ProductName>"
 RequiredVersion = "<ProductVersion>"
 ProviderName = 'programs','msi'
 ErrorAction = 'SilentlyContinue'
 }
 Get-Package @params

ProductName - The product name from the patch manifest that identifies the name of the installed product.
ProductVersion - The product version from the patch manifest that identifies the version of the installed product.

To install a WindowsMsp patch the following command is used by the Package Provider:

msiexec.exe /p "<Path to installer msp>" /quiet /norestart

Path to installer msp - this is the path to the actual file that kicks off the install process
For example: C:\packages\MyPatch1.0.0\patchInstaller.msp

WindowsCabinet
NOTE

The RPS Package Provider is only compatible with Windows KB (Knowledge Base) updates that have the CAB file format. Other CAB files may not
work using this method. You can test if a CAB file is compatible by using the Dism command explained below to see if its compatible with the
RPS Package Provider. If they are not compatible then they may be able to be installed using the script framework and a custom PowerShell
script that can install the file.

To test if a WindowsCabinet patch is installed the following command is used by the Package Provider:

Get-Hotfix -Id <ProductId> -ErrorAction SilentlyContinue

ProductId - The product id from the patch manifest, which is the unique identifier of the product.

To install a WindowsCabinet patch the following command is used by the Package Provider:

Dism\Add-WindowsPackage -PackagePath <Path to cab archive> -Online -NoRestart

Path to cab archive - this is the path to the actual file for the cab archive
for example: C:\packages\MyPatch1.0.0\cabArchive.cab

WindowsExe
To test if a WindowsExe patch is installed use following script which is used internally by the Package Provider:



$Name = "<ProductName>"
$IdentifyingNumber = "<ProductId>"
$Version = "<ProductVersion>"

$uninstallRegistryKey = 'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall'
$uninstallRegistryKeyWow64 = 'HKLM:\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall'

$productEntry = $null
$productEntryPath = $null

if ([String]::IsNullOrEmpty($Version) -or ([String]::IsNullOrEmpty($IdentifyingNumber) -and [String]::IsNullOrEmpty($Name)))
{
 return $productEntry
}

if (-not [String]::IsNullOrEmpty($IdentifyingNumber))
{
 $productEntryKeyLocation = Join-Path -Path $uninstallRegistryKey -ChildPath $IdentifyingNumber
 $productEntryPath = Get-Item -Path $productEntryKeyLocation -ErrorAction 'SilentlyContinue'

 if ($null -eq $productEntryPath)
 {
 $productEntryKeyLocation = Join-Path -Path $uninstallRegistryKeyWow64 -ChildPath $IdentifyingNumber
 $productEntryPath = Get-Item -Path $productEntryKeyLocation -ErrorAction 'SilentlyContinue'
 }

 if ($productEntryPath -and $Version -eq (Get-LocalizedRegistryKeyValue -RegistryKey $productEntryPath -ValueName 'DisplayVersion'))
 {
 Write-Host "True"
 }
}
else
{
 foreach ($registryKeyEntry in (Get-ChildItem -Path @($uninstallRegistryKey, $uninstallRegistryKeyWow64) -ErrorAction 'Ignore'))
 {
 if ($Name -eq (Get-LocalizedRegistryKeyValue -RegistryKey $registryKeyEntry -ValueName 'DisplayName') -and
 $Version -eq (Get-LocalizedRegistryKeyValue -RegistryKey $registryKeyEntry -ValueName 'DisplayVersion'))
 {
 Write-Host "True"
 }
 }
}

Write-Host "False"

ProductName - The product name from the patch manifest that identifies the name of the installed product.
ProductVersion - The product version from the patch manifest that identifies the version of the installed product.
ProductId - The product id from the patch manifest, which is the unique identifier of the product.

To install a WindowsExe patch the following command is used by the Package Provider:

<Path to executable> <InstallArguments>

Path to executable - this is the path to the actual file for the exe
For example: C:\packages\MyPatch1.0.0\installer.exe /quiet

LinuxRpm
To test if a LinuxRpm patch is installed the following command is used by the Package Provider:

rpm -qa <ProductName> | grep <ProductVersion>

ProductName - The product name from the patch manifest that identifies the name of the installed product.
ProductVersion - The product version from the patch manifest that identifies the version of the installed product.

To install a LinuxRpm patch the following command is used by the Package Provider:

yum -y --nogpgcheck localinstall <Path to RPM>

Path to RPM - this is the path to the actual file for the RPM
For example: /root/packages/MyPatch1.0.0/installer.rpm

ScriptFramework
To test if a ScriptFramework patch is installed you can run the "Test" method of your ScriptFramework script directly.

To install a ScriptFramework patch you can execute the "Set" method of your ScriptFramework script directly.

For more information and examples on this see: RPS Patching Script Framework

How to Patch Using RPS
Last updated on August 2, 2021.

Last Reviewed and Approved on PENDING REVIEW

This document describes the patching process of the Rapid Provisioning System (RPS).

Intended Audience
This article is intended for use by RPS Administrators and patching roles.

Prerequisites
For the Content Delivery Network (CDN) to transfer content between nodes, the CDN will need to know which protocol to use
between nodes: Bits or DFSR. To configure this setting, two new properties will need to be created on each local RPS server node:

ParentCdnProtocol
The value will be either 'Dfsr' or 'Bits'. This is the connection RPS will use when communicating with its parent.

ChildCdnProtocol

The value will be either 'Dfsr' or 'Bits'. This is the connection RPS will use when communicating with all its children.
You cannot configure each child differently.

NOTE

The ChildCdnProtocol value does not need to match the ParentCdnProtocol value.

How to Patch Using RPS
The RPS Patching feature lets users deploy patches and new software through the RPS system. This section will provide the
information on supported patch types, supported operating systems, and instructions on using RPS to patch.

Suppor ted Patch Types

The following are a list of valid patch types that can be applied using RPS:

MSU (Windows)

EXE (Windows)

MSI (Windows)

CAB (Windows)

RPM (Linux)

Script Framework (PowerShell)

To learn more, see: RPS Patch Product Types.

Suppor ted Operating Systems

RPS supports the following operating systems and versions:

Windows 10



Windows Server 2012 (or newer)

CentOS Linux 5 (or newer)

Red Hat Linux 5 (or newer)

Appliances that use PowerShell

How to Patch Windows or L inux

NOTE

For a patch stream to deploy, the target(s) must be in a valid maintenance window.

1. (Optional) Create Maintenance Window(s) for the Targets that you want to patch. See How to Use Maintenance Windows.

2. Create the patch file. See How to Create an RPS Patch.

3. Place all the patch files in a single directory. There should be a single directory for each patch stream.

4. Copy the patch files to the node. You can use an external media device to do this, such as a thumb drive, to copy the files to
the node.

5. Create the patch stream for the patch files. See How to Create a Patch Stream.

6. Approve the patch stream. See How to Approve and Reject Patch Streams.

How to Patch an Appliance

1. Create a target type that is 'patchable' and properties for the appliance. See How to Create a Patchable Target Type.

2. Create the patch zip file. See How to Create an RPS Patch.

3. Place the patch file(s) in a single directory. there should be a single directory for each patch stream.

4. Copy the patch file(s) to the node. You can use an external media device to do this, such as a thumb drive, to copy the files to
the node.

5. Create the patch stream for the patch file(s). See How to Create a Patch Stream.

6. Approve the patch stream. See How to Approve and Reject Patch Streams.



How to Create a Patchable Target Type
Last updated on July 23, 2021.

Last Reviewed and Approved on PENDING REVIEW

Overview
Systems requiring patches must be marked as patchable targets in order to receive patch assignments. This is achieved by using
the Set-RpsTypeProperty with the -CanPatch switch parameter when the target items are created.

How CanPatch is Used
The -CanPatch switch parameter signifies that a target is patchable and can receive patch assignments. Patches in RPS use
specific conditions to automatically be assigned patchable targets when a patch stream is approved. The patches and targets that
receive RPS patch assignments must have the same conditions set.

Conditions are properties on patches and targets that have a Name, Value, and Operator. By default, all patches have these
conditions added to them:

1. OsType - This value is pulled from the patch's manifest. This will match with any target that has an OsType that is the same
as the value on the patch.

2. OsVersion - This value is pulled from the patch's manifest. This will match with any target that has an OsVersion that is the
same as the value on the patch.

3. Architecture - This value is pulled from the patch's manifest. This will match with any target that has an Architecture that is
the same as the value on the patch.

4. CanPatch - This value is based on the target item's Target Type. This will match with any target whose Target Type has a
-CanPatch parameter set to true. This means that only "patchable" targets will get patch assignments.

How to Create a Patchable Target Type
To create a target type and properties for a patchable target, use the Set-RpsTargetType cmdlet in an Administrative PowerShell
window, then set the -CanPatch switch parameter to mark it as being "patchable", as shown in the following example:

$hostType = Set-RpsTargetType -Name 'EsxHost' -IsRoot -CanPatch

A patchable Target Type can then be used to create Target Items that are patchable using the Set-RpsTypeProperty cmdlet.

NOTE

Target types and target items that are not created with the -CanPatch attribute are not patchable.

The following example lists the required properties to create a patchable target type:

$null = Set-RpsTypeProperty -Parent $hostType -Name 'ComputerName' -PropertyType Text -IsRequired
$null = Set-RpsTypeProperty -Parent $hostType -Name 'IPAddress' -PropertyType Text -IsRequired
$null = Set-RpsTypeProperty -Parent $hostType -Name 'RunPackagesOnTms' -PropertyType Boolean -DefaultValue 'True'
$null = Set-RpsTypeProperty -Parent $hostType -Name 'OsType' -PropertyType Text - DefaultValue 'ESX'
$null = Set-RpsTypeProperty -Parent $hostType -Name 'Architecture' -PropertyType Text - DefaultValue 'x86'
$null = Set-RpsTypeProperty -Parent $hostType -Name 'OsVersion' -PropertyType Text - DefaultValue '10.12.10'

The following table describes the required properties:



PR OPER T Y NAME
PR OPER T Y
T YPE D ES CR IPTION

ComputerName text Name of the target

IPAddress text IP address of the target

RunPackagesOnTms boolean Indicates whether to deploy Patches from TMS instead of from the target itself (TMS acts as a
proxy)

OsType text OS Type (e.g. Linux, Windows, ESX)

Architecture text Architecture of the target

OsVersion text OS version

The following example lists the optional properties which can be added when creating a patchable target type:

$null = Set-RpsTypeProperty -Parent $virtualMachine -Name 'VMId' -PropertyType Text
$null = Set-RpsTypeProperty -Parent $virtualMachine -Name 'MemoryMB' -PropertyType Number -IsRequired -DefaultValue 2048
$null = Set-RpsTypeProperty -Parent $virtualMachine -Name 'ProcessorCount' -PropertyType Number -IsRequired -DefaultValue 1
$null = Set-RpsTypeProperty -Parent $virtualMachine -Name 'State' -PropertyType Text -DefaultValue 'Running' # Running | Paused | Off
$null = Set-RpsTypeProperty -Parent $virtualMachine -Name 'Path' -PropertyType Path
$null = Set-RpsTypeProperty -Parent $virtualMachine -Name 'Generation' -PropertyType Number -DefaultValue '2' # 1 | 2
$null = Set-RpsTypeProperty -Parent $virtualMachine -Name 'SecureBoot' -PropertyType Boolean -DefaultValue $true
$null = Set-RpsTypeProperty -Parent $virtualMachine -Name 'MinimumMemoryMB' -PropertyType Number
$null = Set-RpsTypeProperty -Parent $virtualMachine -Name 'MaximumMemoryMB' -PropertyType Number
$null = Set-RpsTypeProperty -Parent $virtualMachine -Name 'IsCDN' -PropertyType Boolean
$null = Set-RpsTypeProperty -Parent $virtualMachine -Name 'IsTms' -PropertyType Boolean
$null = Set-RpsTypeProperty -Parent $virtualMachine -Name 'IsDB' -PropertyType Boolean
$null = Set-RpsTypeProperty -Parent $virtualMachine -Name 'IsDC' -PropertyType Boolean
$null = Set-RpsTypeProperty -Parent $virtualMachine -Name 'IsAppliance' -PropertyType Boolean -DefaultValue $false
$null = Set-RpsTypeProperty -Parent $virtualMachine -Name 'ProvisionIpAddress' -PropertyType Text
$null = Set-RpsTypeProperty -Parent $virtualMachine -Name 'Status' -PropertyType Text
$null = Set-RpsTypeProperty -Parent $virtualMachine -Name 'AutomaticCheckPointsEnabled' -PropertyType Boolean
$null = Set-RpsTypeProperty -Parent $virtualMachine -Name 'EnableGuestService' -PropertyType Boolean
$null = Set-RpsTypeProperty -Parent $virtualMachine -Name 'SecureBoot' -PropertyType Boolean

How to Use Maintenance Windows
Last updated on Julyy 07, 2021.

Last Reviewed and Approved on PENDING REVIEW

Intended Audience
This document is intended for RPS patching roles, Lead Systems Integrators (LSI), Field Service Representatives (FSR), IT staff, and
Developers.

What is a Maintenance Window?
Maintenance windows are used in RPS to schedule the exact time needed for system patching or to create a period of no change
within the RPS target environment. Maintenance windows are required for scheduling patch streams and are available through
the RPS website's Distribution menu. RPS patch streams combine zipped (.zip) RPS patches, an approval process, and a scheduled
deployment of patches to RPS targets.

In addition,

Multiple schedules can be created for each patch stream. This allows the deployment of a patch stream to different targets
on different schedules.

For administrators, the object is a templatized Resource Item (an object) that gets assigned to one or more Target Items
(computers or endpoints) and represents a window of time that a software installation can occur.

Maintenance windows are particularly useful for defining a period of no change or code freeze.

IMPORTANT

Without an active maintenance window, no patches will be applied or removed because the Desired State Configuration (DSC) Set command
will only run inside a maintenance window.

Creating a Maintenance Window
Maintenance windows can be created through a local RPS node server website, or using PowerShell as described later in this
article.

NOTE

Users may see "patch" and "package" used interchangeably in the log outputs during this process.

D istribution Menu

Navigate to the Distribution Menu. Three menu options are presented: Patch Streams, Patches and Certificate Management. Select
Patch Streams.





Figure 1: RPS Patching Distribution Menu

Schedule Tab

From the Patch Stream Maintenance Windows page, select the "Schedule" tab.

Figure 2: Schedule Tab

Using the Filters on the left side of the window, define the Node and Target you would like to schedule a maintenance window
for and click Apply. This search will return any previously scheduled windows for the Node and/or Target you defined. Use the
red Clear button to clear the filter.

Create Maintenance Window

If no maintenance windows are defined matching the filter criteria, use the click here link to open the "Create Maintenance
Window" form and create a new one.

TIP

Ensure to use a descriptive name for your maintenance window, e.g., Patch Tuesday.



Figure 3: Create Maintenance Window form

The folowing fields are available to define your maintenance window.

NOTE

It is best practice to create multiple maintenance windows to satisfy your time, date, and frequency requirements.

PR OPER T Y T YPE D ES CR IPTION

Name string The friendly name of the maintenance window. { e.g. 'Patch Tuesday' }

Frequency string The frequency upon which the window should be open { Daily, Weekly, or Monthly }

Day of the
Week string[] The day(s) of the week Set-TargetResource will run. { Sunday, Monday, Tuesday, Wednesday,

Thursday, Friday, or Saturday }

Week of the
month int[] The week(s) of the month Set-TargetResource could be run. 0 represents the last week of the month.

{ 0, 1, 2, 3, or 4 }



Day of the
month int[] The day(s) of the month Set-TargetResource will run. 0 represents the last day of the month. { 0 - 31

}

Start Date DateTime The first UTC date Set-TargetResource is allowed to run

End Date DateTime The last UTC date Set-TargetResource is allowed to run

Start Time TimeSpan The first time the of day Set-TargetResource is allowed to run

Duration TimeSpan The amount of time from the start of the window to allow updates.

Target Items Selectable Tree
View Checkbox the target items that apply, or do not select any.

PR OPER T Y T YPE D ES CR IPTION

In addition to identifying the time, date, and frequency of your maintenance window, you will need to identify the target items to
which the window applies. This is done by placing checks in the boxes next to items you require assigned to this window. It is
possible that you will have maintenance windows with no assigned target items. These assignments can be specified as needed
through the UI or via PowerShell cmdlet discussed below.

Figure 8: Target Items Tree View

IMPORTANT

A value of zero 0 in the Day of the month or Week of the month field indicates the last day or week of the month.

TIP

Recommended best practice to utilize Universal Time Coordinated (UTC) dates for Start Date and End Date regardless of target item time
zone.

Once you have completed the form, save the maintenance window by clicking the Submit button.

Using PowerShell To C reate a Maintenance Window

As seen in the example below, use the New-RpsMaintenanceWindow cmdlet to create your maintenance window using PowerShell.

NOTE







In the examples below, replace the words in parenthesis with unique names applicable to the maintenance window being created.

$startDate = (Get-Date)
$startTime = New-TimeSpan -Hours 0 -Minutes 0
$endDate = $startDate.AddDays(5)
$endTime = New-TimeSpan -Hours 11 -Minutes 59
$frequency = "Daily"

$myWindow = New-RpsMaintenanceWindow -Name 'myWindow' -Frequency $frequency -StartDate $startDate -StartTime $startTime -
EndDate $endDate -EndTime $endTime

Checking the result of $myWindow will show you what was created, for example: $myWindow.Properties :

K EY V ALU E

StartDate 1/30/2020 12:00:00AM

StartTime 00:00

EndTime 23:59

EndDate 2/4/2020 12:00:00AM

Frequency "Daily"

Use the Get-RPSMaintenanceWindow , Get-RpsTargetItem , and New-RpsResourceAssignment cmdlets to specify the target items for
your maintenance window as seen the the following example.

$myWindow = Get-RpsMaintenanceWindow -Name 'myWindow'
$myTargetItem = Get-RpsTargetItem -Name 'myTargetItem'
New-RpsResourceAssignment -ResourceItem $myWindow.MaintenanceWindowResourceItem.Id -TargetItem $myTargetItem

Edit ing Maintenance Windows

To view or edit existing maintenance windows return to the "Schedule" tab located on the Patch Stream Maintenance Windows
page. Using the Filters on the left side of the window, define the Node and Target you would like to view the scheduled
maintenance window for and click Apply. This search will return any previously scheduled windows for the Node and/or Target
you defined. Use the red Clear button to clear the filter.

Figure 4: View or Edit Maintenance Windows

To view an existing maintenance window using PowerShell, use the Get-RpsMaintenanceWindow cmdlet. The below examples show
runing this cmdlet against the -Name and the -Id paramaters.

Get-RpsMaintenanceWindow -Name 'myWindow'

or

Get-RpsMaintenanceWindow -Id <GUID>

To make any necessary changes click the Edit button on the top-right of the maintenance window tile, shown below:

Figure 5: Edit Button

The "Create Maintenance Window" form will open allowing you to make changes. Once completed click Submit.

To edit with PowerShell you will use the Get-RpsMaintenanceWindow followed by the Set-RPSMaintenanceWindow cmdlets as seen
in the following examples.

$myWindow = Get-RpsMaintenanceWindow -Name 'myWindow'
Set-RpsMaintenanceWindow -Id $myWindow.Id -DayOfTheWeek 'Sunday'

or

$myWindow = Get-RpsMaintenanceWindow -Name 'myWindow'
Set-RpsMaintenanceWindow -Name 'myWindow' -DayOfTheWeek 'Sunday'

In both of these examples the -DayofTheWeek property was set to Sunday by calling the -Name or -Id of the 'myWindow'
maintenance window.

D eleting Maintenance Windows

To delete existing maintenance windows return to the "Schedule" tab located on the Patch Stream Maintenance Windows page.
Using the Filters on the left side of the window, define the Node and Target you would like to view the scheduled maintenance
window for and click Apply. This search will return any previously scheduled windows for the Node and/or Target you defined.

Select the applicable window you would like to delete and click the red Delete button on the top-right of the maintenance
window tile, shown below:

Figure 6: Delete Button

A warning dialog opens displaying information about the mainenance window to be deleted. Clck the red Delete button to
continue or click Cancel to close without deleting.

Figure 7: Deletion Warning Dialog Box

Use the Delete-RpsMaintenanceWindow cmdlet to delete a maintenance window using PowerShell, as seen in the example below:

Delete-RpsMaintenanceWindow -Id <GUID>

How to Create an RPS Patch
Last updated on August 26, 2021.

Document Status: Document Feature Complete as of August 26, 2021; PENDING EXTERNAL REVIEW.

What is a Patch
An RPS Patch is what RPS calls any executable meant to be distributed via RPS to an RPS Target with the intent of managing the
software on the target. A patch is a Zip archive that contains the content needed in order to manage the software, such as
executables. A patch also requires a patch manifest file, which is an XML formatted text file containing required metadata. That zip
archive in its entirety is what would be considered a "Patch" in terms of RPS, not the individual files inside.

How to Create a Patch Manually
It is recommended to utilize REACTR to create RPS patches. How to Create, edit, and download patches in REACTR.

To create a patch manually:

1. Create a text file and name it "RPS.Package". Ensure the file format is not .txt.
2. Open RPS.Package with Notepad and copy the empty Patch Manifest example in Patch Manifest Definition.
3. Fill in the required fields for the patch manifest and save the RPS.Package file.
4. Gather all content files needed to run on the target in order to install, upgrade, or uninstall. This must include an executable

entry point such as an .exe file.
5. Zip content files and RPS.Package into one archive.

1. Right-click on the installer or multiple selected files to bring up the context menu
2. Highlight 'Send To' context menu option
3. Select 'Compressed (zipped) folder' option

6. Rename the zipped archive file. The ZIP file must be named with the exact ProductName and ProductVersion values from
the patch manifest file in the format "ProductNameProductVersion.zip" with no spaces in between the values. For example
"Firefox70.0.zip".

Example: C reating a FireFox I nstall Package

1. Navigate to the desired directory in File Explorer, right-click, highlight New, and select Text Document. Name the file
"Package.RPS". This is the patch manifest file.

Figure 1 Create the Patch Manifest file

Figure 2 Name the file RPS.Package

2. Edit the PackageManifest file and populate required fields for the Firefox version that is to be installed.

<?xml version="1.0" encoding="utf-8"?>
<PackageManifest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
version="1.0">
<PackageName>Firefox</PackageName>
<PackageVersion>70.0.0</PackageVersion>
<Description>This is a test package</Description>
<OsVersion>*</OsVersion>
<Architecture>x64</Architecture>
<OsType>Windows</OsType>
<MsCatalogProductName>Firefox70</MsCatalogProductName>
<MsCatalogTitle />
<MsCatalogId />
<Products />
<MsCatalogUpdateId />
<PackageClassification>General</PackageClassification>
<MsCatalogSupercededByKbIds />
<MsCatalogLinkUrls />
<UninstallArguments>/s</UninstallArguments>
<InstallArguments />
<SuppressReboot>true</SuppressReboot>
<ProductName>Mozilla Firefox 70.0 (x64 en-US)</ProductName>
<ProductType>WindowsMsi</ProductType>
<ProductVersion>70.0</ProductVersion>
<ProductId>{74994757-3b19-4c54-afe4-ae84e398a3f7}</ProductId>
<InstallerFileName>firefox.msi</InstallerFileName>
</PackageManifest>

3. Zip the installer and any files needed for the desired Firefox version

1. Right-click on the installer or multiple selected files to bring up the context menu
2. Highlight 'Send To' context menu option

3. Select 'Compressed (zipped) folder' option

Figure 3 Create a Compressed (zipped) folder

Figure 4 Firefox Patch Contents

4. Rename the zip file to "ProductNameProductVersion" based on the patch manifest values. For this example, the filename
would be "Firefox70.0.zip".

Figure 5 Firefox v70.0 Rps Patch

How to Disable or Enable an RPS Patch Using PowerShell
Last updated on August 19, 2021.

Document Status: Document Feature Complete as of August 19, 2021; PENDING EXTERNAL REVIEW.

This document describes how to disable or enable an RPS patch using PowerShell.

NOTE

A patch is enabled by default and is not disabled until you direct RPS to disable this patch.

Prerequisites
1. Log into an RPS Server and launch Windows PowerShell or Windows PowerShell ISE as administrator.

Figure 1: Run PowerShell as administrator.

2. Change your directory to the RPS ContentStore. For example:

cd C:\ContentStore

3. Import the RPS API module.

Import-Module C:\ContentStore\Modules\Rps-Api

4. Create a patch. See How to Create an RPS Patch.

How to Disable a Patch
A patch is enabled by default and is not disabled until you direct RPS to disable this patch. Disabling a patch will not reverse past



deployments, but it will halt future deployments from occurring.

Disable a patch using the PowerShell cmdlet, Disable-RpsPatch.

WARNING

Disabling a patch will disable all patches that depend on it.

After the disable patch command has been executed, the following will happen:

1. The patch will be disabled (IsActive Property set to "False").

2. All of the patches that depend on the disabled patch will also be disabled.

D isable-RpsPatch

PowerShell cmdlet that disables an RPS Patch.

Disable-RpsPatch -Patch $myPatch -Force

Options for the Disable-RpsPatch cmdlet are:

PAR AME TER NAME T YPE D ES CR IPTION R EQU IR ED

Patch Patch Patch to be disabled. True

Force Switch Force execution of disabling patch without confirmation. False

How to Enable a Patch
A patch is enabled by default and is not disabled until you direct RPS to disable this patch. If a patch has been disabled, then the
patch can be enabled for future deployments. Re-enabling a patch will not reverse past deployments.

Enable a patch using the PowerShell cmdlet, Enable-RpsPatch.

WARNING

Enabling a patch will enable all patches that patch depends on.

After the enable patch command has been executed, the following will happen:

1. The patch will be enabled (IsActive Property set to "True").

2. All of the patches that the enabled patch depends on will also be enabled.

Enable-RpsPatch

PowerShell cmdlet that enables an RPS Patch.

Enable-RpsPatch -Patch $myPatch -Force

Options for the Enable-RpsPatch cmdlet are:





PAR AME TER NAME T YPE D ES CR IPTION R EQU IR ED

Patch Patch Patch to be enabled. True

Force Switch Force execution of enabling patch without confirmation. False

How to Create a Patch Stream
Last updated on July 9, 2021.

Last Reviewed and Approved on PENDING REVIEW

Introduction
This document provides step-by-step instructions for loading a patch stream into RPS using the User Interface.

Prerequisites
User must have permissions to the CDN folder.
User must be part of the ContentCreators Active Directory group.
Patches must have been previously created. Please visit How to Create an RPS Patch for detailed instructions.

NOTE

Users may see "patch" and "package" used interchangeably in the log outputs during this process.

What is a Patch Stream
A patch stream is what RPS calls a collection of RPS patches that will be distributed via RPS to other RPS targets with the intent of
managing the software on the target.

A patch is a .ZIP archive that contains the content to deploy to the desired Targets and an RPS Patch Manifest file. The .ZIP archive
in its entirety is what would be considered an "RPS Patch", not the individual files inside.

TIP

You can find out more about RPS patches in the article "How to Create an RPS Patch". You can find out more about RPS patch manifests in the
article "RPS Patch Manifest Definition".

How to Create a Patch Stream Using the RPS GUI
1. Launch the RPS GUI and navigate to any of the patch stream management pages.

2. From the patch streams page select the Create a new Patch Stream button.





Figure 1: Create a new patch stream button.

3. A new form will appear and you will be prompted to provide a Unique Name for your new patch stream.

4. Click Submit.

Figure 2: Create a new patch stream Name input.

5. Upon submit, you will be taken to a patch stream Editing page. Select the button labeled Upload RPS .ZIP Patches to this
Stream.

Figure 3: patch stream Edit form.

6. A new upload form will appear. Use the input button to select the RPS .ZIP patches you wish to associate with the new
patch stream.

7. Select the Upload button.

Figure 4: Upload patch files form.

NOTE

1. The patch upload location is configurable and can be modified by adjusting the uploads:Location property in RPS Web's
web.config file.

2. The patch upload location "days until clean up" is configurable and can be modified by adjusting the uploads:DaysUntilCleanup

property in RPS Web's web.config.
1. The default value for uploads:Location is: ~/App_Data/Uploads .
2. The default value for uploads:DaysUntilCleanup is: 30 .

8. Your RPS Patches will begin to upload. Click OK once complete.

Figure 5: Finished uploading patch file(s).

IMPORTANT

Do not navigate away from the page while uploads are in progress. You cannot submit partially uploaded patches. If you are uploading
extremely large files, you can continue working by clicking the link "open the RPS GUI in another tab".

9. The upload modal will close and the patch stream editing page will refresh, showing the newly uploaded patches.



Figure 6: patch stream Edit form with uploaded patches.

10. If the patches provided are invalid, you will see errors specifying what values in the .Rps file are non-complicit.

Figure 7: Uploaded patch showing validation exceptions.

NOTE: Uploaded files are stored in a temporary location. These files will be moved to the CDN once a patch stream is created.
If a patch stream is created or updated, then the temporary patch uploads will be removed once they are copied to the CDN. If
a patch stream is not completed created (e.g. the Save Changes button is not clicked), then the uploaded patches will remain
in the temporary upload location for a configurable amount of time (default is 30 days). After the configurable amount of time
has passed, the uploaded patches in the temporary upload location will be automatically removed.

How to Transfer Non-Patching Content Delivery with RPS
Last updated on August 4, 2021.

Document Status: Document Feature Complete as of August 4, 2021; PENDING EXTERNAL REVIEW.

Overview
The Rapid Provisioning System (RPS) can replicate non-patching content, such as log shipping information, to nodes within the
local domain and to nodes outside of the local domain. Non-Patching content delivery can be achieved using PowerShell and RPS
cmdlets.

Prerequisites
Users performing non-patching content delivery should have the RPS Patching role or be assigned RPS Admin permissions, and
have knowledge and experience using PowerShell and RPS.

Resource Type Definition
To create transferable non-patching content, the Resource Type Definition must be set. This property will enable RPS to include
this information when it configures DFSR and/or BITS for replication to the target node. For information on enabling DFSR and
BITS, see How to Enable and Disable CDN Communication.

To set the Resource Type Definition:

1. Login to RPS and open a PowerShell window as Administrator.

2. Execute the following PowerShell code block:

$type = Set-RpsResourceType -Name 'Logs' -IsContentDistribution -CdnDirection Downstream
$null = Set-RpsTypeProperty -Parent $type -Name 'DisplayName' -PropertyType Text

The above command will configure any Resource Item (content) of type 'Logs' to be marked as transferable content.

The -CdnDirection parameter determines the direction of data transfer and has two possible options:

Downstream: the direction for content transfer will be to child nodes.
Upstream: the direction for content transfer will be to parent nodes.

NOTE

'Logs' and 'DisplayName' are example values only and should be customized in the script to user requirements.

Create a Resource Item
Next, the content must be created using the New-ResourceItem cmdlet. The following code block will set variables and create a
new ResourceItem.

$contentType = 'Logs'
$contentName = 'Firewall Logs'
$newContent = New-RpsResourceItem -Type $contentType -Name $contentName -IsGlobal $true -Properties @{ DisplayName =
$contentName }

NOTE





Users must specify the $ContentType and $ContentName variables.

The following code block sets the FolderID and the FolderResourceID on the newly created content:

$folderId = [Rps.Api.Utils.HashingUtils]::Reverse($newContent.Id)

$newContent.FolderResourceId = $folderId
$newContent.Update()

The following code block gets the CDN Folder, creates a new directory in the CDN folder, and configures Folder Data in CMDB:

$localNode = Get-RpsLocalNode
$cdnPath = $localNode.CdnPath

$null = New-Item -Path $cdnPath -Name $folderId -ItemType Directory

$fileCatalog = [Rps.Api.Utils.FileUtils]::BuildFolderCatalog($(Join-Path -Path $cdnPath -ChildPath $folderId))
[Rps.Api.Utils.FileUtils]::CreateFolderCatalog($fileCatalog, $contentName, $folderId)

Assign the Resource Item (Content) to a Target Node
Now the ResourceItem must be assigned to a target in order to be transferred. This is accomplished with the following code block:

$regionTarget = Get-RpsTargetItem -Name <app.region.rps> -Type VirtualMachine
$siteTarget = Get-RpsTargetItem -Name <app-s.region.rps> -Type VirtualMachine

$null = $newContent.AssignTo($regionTarget)
$null = $newContent.AssignTo($siteTarget)

NOTE

Users must specify the target node in the -Name parameter of this code block.

PowerShell Script Example
The below script can be copied and pasted to perform all of the discussed actions at once.



Variables
$contentType = 'Logs'
$contentName = 'FirewallLogs'

Create Type Definition for new Content
$type = Set-RpsResourceType -Name 'Logs' -IsContentDistribution -CdnDirection Downstream
$null = Set-RpsTypeProperty -Parent $type -Name 'DisplayName' -PropertyType Text

Create the resource item with the same type
$newContent = New-RpsResourceItem -Type $contentType -Name $contentName -IsGlobal $true -Properties @{ DisplayName =
$contentName }

Get the folder Id. FolderId is the reverse of the content resource item
$folderId = [Rps.Api.Utils.HashingUtils]::Reverse($newContent.Id)

Set FolderResourceId on the new content.
$newContent.FolderResourceId = $folderId
$newContent.Update()

Get CDN Folder
$localNode = Get-RpsLocalNode
$cdnPath = $localNode.CdnPath

Create folder
$null = New-Item -Path $cdnPath -Name $folderId -ItemType Directory

Configure Folder data in CMDB
$fileCatalog = [Rps.Api.Utils.FileUtils]::BuildFolderCatalog($(Join-Path -Path $cdnPath -ChildPath $folderId))
[Rps.Api.Utils.FileUtils]::CreateFolderCatalog($fileCatalog, $contentName, $folderId)

Assign content to targets on each node you want to send the data to
$regionTarget = Get-RpsTargetItem -Name <app.region.rps> -Type VirtualMachine
$siteTarget = Get-RpsTargetItem -Name <app-s.region.rps> -Type VirtualMachine

$null = $newContent.AssignTo($regionTarget)
$null = $newContent.AssignTo($siteTarget)

NOTE

The $contentType and $contentName variables, and the -CdnDirection and -Name parameter values in the above script are examples only
and must be customized by the user for the script to execute properly.



How to Load a Patch Stream
Last updated on July 7, 2021.

Last Reviewed and Approved on PENDING REVIEW

Introduction
This document provides step-by-step instructions for loading a patch stream into RPS.

Prerequites
User must have permissions to the CDN folder.
User must be part of the ContentCreators Active Directory group.
Patches must have been previously created. Please visit How to Create an RPS Patch for detailed instructions.

NOTE

Users may see "patch" and "package" used interchangeably in the log outputs during this process.

How to Create a Patch Stream Using PowerShell Cmdlets
NOTE

If patches have already been copied to the node, proceed to step 3.

1. On an external media device (e.g. USB thumb drive), create a new directory.

2. Zip patch files and and move them to the newly created directory.

3. Log into the node where you will be creating the patch stream.

4. Open a PowerShell window as an Administrator.

5. Change your directory to the RPS ContentStore using the following command:

cd C:\ContentStore

6. Import the RPS API module using the following command:

Import-Module C:\ContentStore\Modules\Rps-Api

7. Use the New-RpsPatchStream cmdlet to create the patch stream. There are two required parameters and two optional
parameters for use with the New-RPSPatchStream cmdlet:

The following parameters are required:

PAR AME TER
NAME T YPE D ES CR IPTION

Name string Names the new patch stream (max length = 255). The name can be arbitrary and is valid only to the
user.

Path string Specifies current location of patches (e.g. on the external media)





The following parameters are optional:

PAR AME TER
NAME T YPE D ES CR IPTION

PatchExtensions List of
String

Used to list file extensions of patches that will be searched for in the location specified in the Path
parameter. The files must be valid ZIP archives.

Recurse Switch Used to search all sub-directories of path parameter for patches.

The following is an example of how these parameters can be used with the New-RPSPatchStream cmdlet to create a patch
stream:

New-RpsPatchStream -Name MyPatchStream1 -Path E:\Patches -PatchExtensions ".zip"

In this example, the user has created a patch stream named "MyPatchStream1" containing patches from the E:\Patches\

directory.

8. The following actions will occur once the New-RPSPatchStream command has been successfully executed:

a. A patch stream item will be added to the Configuration Management Database (CMDB).

b. The patches will be added to the CMDB, one for each patch found in the location specified by the path parameter.

c. The patches will be copied into the CDN directory, enabling them to be replicated across the CDN.

NOTE

The initial state of a patch stream is "Pending" and therefore no assignments between patches and targets will be made.

d. The patch stream will be approved via PowerShell or the Web UI. For more information on how to approve and reject
patch streams, please visit How to Approve and Reject Patch Streams.



How to Add a Patch Using PowerShell
Last updated on July 30, 2021.

Last Reviewed and Approved on PENDING REVIEW

Introduction
This document describes the step-by-step PowerShell instructions for:

Adding a patch without a patch stream.
Adding a patch to a patch stream.
Update the patches in a patch stream.

For instructions on how to create a patch using the RPS User Interface, see How to Create a Patch Stream.

NOTE

Users may see "patch" and "package" used interchangeably in the log outputs during this process.

Prerequisites
1. Open a PowerShell window as an Administrator.

NOTE

User must be a Global Admin, Patch Admin, or Patch Creator.

2. Change your directory to the RPS ContentStore. For example:

cd C:\ContentStore

NOTE

The ContentStore directory location is user changeable. The current ContentStore directory location can be determined using the following
PowerShell snippet:

(Get-RpsLocalNode).ContentPath

3. Import the RPS API module.

Import-Module C:\ContentStore\Rps-Api

NOTE

The ContentStore directory location is user changeable. The current ContentStore directory location can be determined with the following
PowerShell snippet:

(Get-RpsLocalNode).ContentPath

New-RpsPatch









PowerShell cmdlet that is used to create a new RPS Patch.

For more information on patches, see How to Create an RPS Patch. For instructions on how to create a patch stream using
PowerShell, see How to Load a Patch Stream.

Parameters

PAR AME TER NAME T YPE D ES CR IPTION R EQU IR ED

Path string Path of the patch. False

PatchStream string Patch Stream object that the patch will be added to. False

Adding a Patch
1. Follow the Prerequisite steps to add the RPS PowerShell API module.

2. Add the patch, without or with a patch stream, using the New-RpsPatch cmdlet and parameters mentioned, above.

a. Add a patch without a patch stream example:

New-RpsPatch -Path C:\Patches\myPatch.zip

b. Add a patch with a patch stream example:

New-RpsPatch -Path C:\Patches\myPatch.zip -PatchStream $myPatchestream1

3. After the Patch command has been executed, the following will happen:

1. The patch item will be added to the CMDB.

2. The patch file will be copied in to the CDN directory, so it is able to replicate across the CDN.

Get-RpsPatch
PowerShell cmdlet that gets an RPS Patch that has been added to the CMDB using the New-RPSPatch cmdlet.

Parameters

PAR AME TER NAME T YPE D ES CR IPTION R EQU IR ED

Id GUID ID of the patch in CMDB. False

Get-RpsPatchStream
PowerShell cmdlet that gets an RPS Patch Stream that has been added using the New-RpsPatchStream cmdlet.

For instructions on how to create a patch stream using PowerShell, see How to Load a Patch Stream.

Parameters

PAR AME TER NAME T YPE D ES CR IPTION R EQU IR ED

Id GUID ID of the patch in CMDB. False

Update the Patches in a Patch Stream
1. Follow the Prerequisite steps to add the RPS PowerShell API module.

2. Retrieve the patches you would like to set for the patch stream by using the Get-RpsPatch cmdlet.

$myFirstPatch = Get-RpsPatch -Id <GUID>
$mySecondPatch = Get-RpsPatch -Id <GUID>
$myThirdPatch = Get-RpsPatch -Id <GUID>

3. Assign the patches to a collection.

$myPatches = $myFirstPatch, $mySecondPatch, $myThirdPatch

4. Retrieve the patch stream you'd like to add the patches to by using the Get-RpsPatchStream cmdlet.

$myPatchstream = Get-RpsPatchStream -Id <GUID>

5. Add those patches to the patch stream using the Add-RpsPatch cmdlet and passing in your collection of patches to the
-Patch parameter.

Add-RpsPatch -PatchStream $myPatchstream -Patch $myPatches

NOTE

To replace all patches in a patch stream use the -Force parameter. This is "make it so" behavior. The collection of patches passed to
Add-RpsPatch will become the only patches in the patch stream if the -Force switch parameter is used.

Add-RpsPatch -PatchStream $myPatchstream -Patch $myPatches -Force



How to Remove a Patch From a Patch Stream
Last updated on July 13, 2021.

Last Reviewed and Approved on PENDING REVIEW

Introduction
This document describes the step-by-step process for removing an RPS patch from an RPS patch stream using either PowerShell
cmdlet or an RPS server website GUI.

NOTE

Users may see "patch" and "package" used interchangeably in the log outputs during this process.

How to Remove a Patch From a Patch Stream Using PowerShell Cmdlets
NOTE

The following process will not remove any assignments or patches from the Content Delivery Network (CDN). Patches can only be removed from
patch streams in a "Pending" state.

1. Log into an RPS Server and launch Windows PowerShell or Windows PowerShell ISE as administrator.

Figure 1: Run PowerShell as administrator.

2. Change directory to the RPS ContentStore using the following command:

cd C:\ContentStore





3. Import the RPS API module using the following command:

Import-Module C:\ContentStore\Modules\Rps-Api

4. Remove the patch using the Remove-RpsPatch cmdlet as seen in the examples below. The provided examples demonstrate
removing a patch by identifying the patch id, name, or patch object and the associated patch stream. The table below
describes each parameter.

NOTE

PatchStream is the only required parameter.

PAR AME TER NAME T YPE D ES CR IPTION R EQU IR ED

PatchStream string The patch stream you want to remove the patch from. True

Id string Guid of the patch. False

Name string Name of the patch. False

Patch string The patch object. False

Force switch If you would like to bypass the confirmation for execution. False

Examples:

Remove-RpsPatch -Id <GUID> -PatchStream <$stream> -Force

Remove-RpsPatch -Name <name> -PatchStream <$stream> -Force

Remove-RpsPatch -Patch <$patch Value> -PatchStream <$stream> -Force

How to Remove a Patch Using the RPS Website GUI
Patch streams can be updated to include the removal of a patch, through a local RPS node server website.

NOTE

Patch streams cannot be edited once approved. This includes the removal of patches from the patch stream.

1. Log into the RPS website and navigate to the Distribution menu. Select "Patch Streams" from the available options.

Figure 2: Select "Patch Streams" from the RPS Distribution menu.

2. Select the "Approvals" tab if not currently selected.





3. Click the Edit button, as seen in the following screen capture, for the patch stream to be updated.

Figure 3: On "Approvals" tab, edit the patch stream MyTestStream.

4. On the right-hand side of the screen click on the red Remove from Stream button, as seen in the following screen capture,
to remove the patch from the patch stream.

Figure 4: Remove patch from the patch stream MyTestStream.

IMPORTANT

Users will not be prompted to confirm the removal of a patch. Clicking Remove from Stream is instantaneous, permanent, and does
not require clicking Save Changes to commit. The Discard Changes button will not undo the removal of a patch from a patch stream.



How to Remove a Patch Stream
Last updated on July 28, 2021.

Last Reviewed and Approved on PENDING REVIEW

Introduction
This document describes the step by step instructions for removing a Patch Stream.

How to Remove a Patch Stream in the RPS GUI
1. Launch the RPS GUI and navigate to any of the Patch Stream management pages then select the 'Approvals' Tab.

2. Click on the Delete button of the Patch Stream under 'Pending Approval'

Figure 1: Remove Patch Stream Button.

3. A prompt will appear confirming that you want to delete the patch stream and will list the patches that will be deleted with
the stream.

Figure 2: Remove Patch Stream Confirmation.

4. Once you click 'Delete' the patch stream will be deleted along with the patches listed in the prompt.

How to Remove a Patch Stream with cmdlet
NOTE

This will not remove the Patches from the Content Delivery Network (CDN) or remove any assignments, you can only remove a Patch Stream in
the "Pending" State*

1. Open a PowerShell window

2. Change your directory to the RPS ContentStore. For example:

cd C:\ContentStore

NOTE

The directory for the ContentStore is able to be changed and may be different. User (Get-RpsLocalNode).ContentPath PowerShell
Commmand to get the ContentStore directory

3. Import the RPS API module

Import-Module C:\ContentStore\Modules\Rps-Api

NOTE

The directory for the ContentStore is able to be changed and may be different. User (Get-RpsLocalNode).ContentPath PowerShell
Commmand to get the ContentStore directory







4. Remove the Patch Stream using the Remove-RpsPatchStream cmdlet

Options for the Remove-RpsPatchStream cmdlet

PAR AME TER NAME T YPE D ES CR IPTION

Name string Name of the Patch

Patch string The Patch object

Force Switch Skips the user feedback required to complete the task

Example:

Remove-RpsPatchStream -Name MyPatchStream1

5. You will be prompted with what patches will be removed along with the patch stream

1. Enter 'Y' or any of the options above to continue

Sideloading RPS Patches
Last updated on April 20, 2021.

Last Reviewed and Approved on PENDING REVIEW

This how-to article explains how RPS Administrators and experienced Patch Manager roles can manually stage or position RPS
patches to RPS child nodes, in case of Content Delivery Network (CDN) service disruption.

The activity described below is called Sideloading, which is an acceptable workaround. The method requires remote access to RPS
servers and use of PowerShell.

Intended Audience
RPS Administrators and Patching roles are users of RPS who need to use this article.

Overview
RPS Patching roles routinely build patch streams and patches for deployment to RPS child nodes.

If the Content Delivery Network (CDN) service communication is disabled, patches may not deploy from RPS parent to RPS child
nodes. However, other RPS services will still let the CMDB (Configuration Management Database) update, and will continue to
synchronize with the local, child node CMDBs. This is useful so that the local (child) node has a file path to the CDN file location, so
that the RPS user can copy the patch files to that location.

In this case the RPS user can manually follow the process below.

NOTE

CDN notation in this article will mix between CDN, Cdn, and cdn.

Process
1. Logon to a RPS server.

2. Start an administrative PowerShell session.

3. Perform these four steps:

1. Get the file hash of the RPS patch.

2. Get the Folder Resource ID.

3. Join file paths together.

4. Copy the RPS patch to the CDN file location.

S tep 1 : G et the File Hash of the R P S Patch

$filePath = 'C:\Packages\Firefox 70.0.zip'

Calculate the file hash to get the Resource ID
$resourceId = [Guid]::new([Rps.Api.Utils.HashingUtils]::ComputeMD5Hash($filePath))

NOTE

When a patch is created, it creates an MD5 Hash ID.





S tep 2: G et the Folder Resource I D

NOTE

The folder ID is the reverse GUID of the Resource Item.

Get the folder ID. FolderId is the reverse of the content Resource Item.
$folderId = [Rps.Api.Utils.HashingUtils]::Reverse($newContent.Id)

S tep 3: Join File Paths Together

Get CDN Folder
$localNode = Get-RpsLocalNode
$cdnPath = $localNode.CdnPath

Get CDN folder path to store file
$cdnFolderPath = Join-Path -Path $cdnPath -ChildPath $folderId

Now that we have the full path to the local CDN, we can copy the RPS patch contents over.

S tep 4: Copy the R P S Patch to the C D N File Location

Copy item
Copy-Item -Path $filePath -Destination $cdnFolderPath -Force

Example
$filePath = 'C:\Packages\Firefox 70.0.zip'

Calculate the file hash to get the Resource ID
$resourceId = [Guid]::new([Rps.Api.Utils.HashingUtils]::ComputeMD5Hash($filePath))

Get the folder ID. FolderId is the reverse of the content Resource Item.
$folderId = [Rps.Api.Utils.HashingUtils]::Reverse($newContent.Id)

Get CDN Folder
$localNode = Get-RpsLocalNode
$cdnPath = $localNode.CdnPath

Get CDN folder path to store file
$cdnFolderPath = Join-Path -Path $cdnPath -ChildPath $folderId

Copy item
Copy-Item -Path $filePath -Destination $cdnFolderPath -Force



How to Approve and Reject Patch Streams
Last updated on September 02, 2021.

Document Status: Document Feature Complete as of September 02, 2021; PENDING EXTERNAL REVIEW.

Introduction
This document describes the processes for approving and rejecting RPS patch streams using either PowerShell cmdlet or an RPS
server website GUI. RPS patch streams are a collection of one or more patches to be applied to targeted items during a scheduled
maintenance window. Click the following links for more information on "How to Create a Patch Stream" and "How to Use
Maintenance Windows".

When considering the status of patch streams, there are only four valid scenarios allowed within RPS. All other scenarios are
considered invalid and are not supported. The processes described within this document are only applicable to the valid
scenarios found in the following list:

Valid scenarios:

Pending to Rejected
Pending to Approved
Rejected to Approved
Approved to Approved (Reapprove)

Invalid scenarios:

Rejected to Pending
Approved to Pending
Approved to Rejected

NOTE

Users may see "patch" and "package" used interchangeably in the log outputs during this process.

Approve or Reject Patch Streams Using PowerShell Cmdlets
1. Log into an RPS Server and launch Windows PowerShell or Windows PowerShell ISE as administrator.



Figure 1: Run PowerShell as administrator.

2. Change directory to the RPS ContentStore using the following command:

cd C:\ContentStore

3. Import the RPS API module using the following command:

Import-Module C:\ContentStore\Modules\Rps-Api

4. Approve the patch stream using the Approve-RpsPatchStream cmdlet as seen in the examples below. Table 1 below
describes the available parameters associated with approval and rejection. It is necessary to specify one of these parameters
to approve or reject a patch stream.

PAR AME TER NAME T YPE D ES CR IPTION

PatchStream PackageStream Patch stream object.

Id GUID Guid of the patch stream.

Name string Name of the patch stream.

Table 1: Approve-RpsPatchStream and Deny-RpsPatchStrea cmdlet parameters.

Examples of Approve-RpsPatchStream cmdlet usage:

Approve-RpsPatchStream -Name <name>

Or, using the same Name parameter as the example above but storing the name as a variable:

$myPatchStream = Approve-RpsPatchStream -Name <myPatchStream>

The following examples show specifying the patch stream by ID or PatchSteam object:

Approve-RpsPatchStream -ID <GUID>

Approve-RpsPatchStream -PatchStream <myPatchSteam>

5. It is possible to reapprove a patch stream to correct for assignment changes between targets and patches. For example,
targets from one target group move to a different target group after a patch stream has already been approved. Use the
Approve-RpsPatchStream cmdlet as described above to reapprove the patch stream.

6. To reject a patch stream use the Deny-RpsPatchStream cmdlet as seen in the next examples. Use the parameters listed in
Table 1 above to complete the command.

Deny-RpsPatchStream -Name <name>

Deny-RpsPatchStream -ID <GUID>

Deny-RpsPatchStream -PatchStream <$stream>

Approve or Reject Patch Streams Using the RPS Website GUI
NOTE

Patch streams cannot be edited once approved.

1. Log into the RPS website and navigate to the Distribution menu. Select "Patch Streams" from the available options.

Figure 2: Select "Patch Streams" from the RPS Distribution menu.

2. Select the "Approvals" tab if not currently selected.

3. A patch stream in the "Pending Approval" state can be approved by selecting the green Disseminate button on the right-
hand side of the "Approvals" tab.



Figure 3: Disseminate the patch stream.

4. Confirm the approval by clicking Disseminate on the confirmation window as seen below.

Figure 4: Confirmation Warning Window.

5. Patch streams in the pending approval state can be rejected by selecting the red Reject button on the right-hand side of the
"Approvals" tab.

Figure 5: On "Approvals" tab, reject the patch stream.

6. Confirm the rejection by clicking Reject on the confirmation window as seen below.

Figure 6: Confirmation Warning Window.

7. Rejected patch streams will appear at the bottom of the "Approvals" tab under the "Rejected" section. Here individuals with
approval permissions can optionally choose to disseminate a previously rejected patch stream by clicking the green
Disseminate button as seen in the example below.

Figure 7: Disseminate previously rejected patch stream.

8. Confirm the approval by clicking Disseminate on the confirmation window as seen below.

Figure 8: Confirmation Warning Window.

9. It is possible to disseminate a patch stream to correct for assignment changes between targets and patches. For example,
targets from one target group move to a different target group after a patch stream has already been disseminated.

Disseminating patch streams from the RPS website GUI can be accomplished from the "Patch Streams" page "History" tab
by selecting the desired patch stream and clicking the green Disseminate button as seen in the example below.

Figure 9: Disseminate patch stream.

10. Confirm the approval by clicking Disseminate on the confirmation window as seen below.

Figure 10: Confirmation Warning Window.

Viewing Patch Stream Deployment Telemetry
Last updated on March 4, 2021.

Last Reviewed and Approved on PENDING REVIEW

This article helps RPS Patch managers understand how to track the deployment progress of RPS patching, following their
approval.

Intended Audience
RPS patching roles such as Patch Stream Approvers need to use this article to track the status of their deployments.

Overview
Observe Patch Stream History, by logging into the RPS website. Or, connect to RPS using PowerShell and the RPS PowerShell
cmdlets, discussed later in this article.

On the RPS website, go to the Distribution menu and select "Patch Streams," shown below.

Figure 1: RPS Distribution Menu.

Next, click on History, shown below:

Figure 2: Patch Stream Deployment History.

For More Information
Later in this article: "How RPS Evaluates Deployment Status".

Link to this article "RPS Patch Management Workflow" and learn the flow of RPS patches.

Status Summaries
Patch S tream D eployment S tates

An RPS Patch Steam Approver deploys a Patch Stream containing multiple patches. Then, observe the progress of the
deployment. RPS will show four states:

Pending

Processing

Successful

Error

Patch Assignment Deployment States
For an individual patch assignment, RPS will show several deployment states:

Pending

Processing

Error

Superseded

(Successful) IsPresentAndDesirePresent

(Successful) IsAbsentAndDesireAbsent

(Failed) IsPresentAndDesireAbsent

(Failed) IsAbsentAndDesirePresent

(Failed) IsBelowMinPatchSystemVersion

(Failed) IsAboveMaxPatchSystemVersion

Later, see "How RPS Evaluates Deployment Status".

Viewing Patch Stream Distribution History
From the R P S Website U I

In the RPS Distribution menu, select Patch Streams and the History tab.

1. If there have been no Patch Stream approvals yet, RPS will display a message "There haven't been any attempts to deploy
Patch Streams."

Figure 3: Deployment History

2. If there are Patch Streams that have been previously Approved, the user will see a list of them on the screen, and the overall
deployment status for that Patch Stream will be in the top-right of the panel:

Figure 4: Patch Stream Approval

In Figure 4, the Patch Stream Deployment Status is "Deployment Pending."

3. If any patch in the package stream has been disabled then you should see a (disabled) title next to the patch name and the
patch greyed out.

Figure 7: Disabled Patch

In Figure 7, the Patch - IntelliJ is "Disabled."

V iewing Patch S tream Telemetry From PowerShell

In PowerShell, users can inspect Patch Stream status using the RPS cmdlet Get-RpsPatchStream.

1. Retrieve the patch stream by specifying Patch Stream's name in the -Name parameter of the Get-RpsPatchStream cmdlet:

$myPackageStream = Get-RpsPatchStream -Name 'MyPackageStream1'

2. You can print the Approval Status and approval metadata accessing the ApprovalStatus , ApprovedOn , and ApprovedBy

properties:

Get-RpsPatchStream -Name 'MyPackageStream1' | Select-Object ApprovedStatus, ApprovedOn, ApprovedBy

Viewing Patch Telemetry
Users in the Patch Stream Approver role can determine that the contents of the Patch Stream are not to be deployed to target
items by Rejecting the Patch Stream.

V iewing Patch S tream S tatus From the U I

Patch Stream Approvers can approve Patch Streams for future deployment.

1. Launch the RPS Website.

2. Navigate to the Package Page, and select the "History" tab.

3. If there have been no Patch Stream approvals yet, RPS will display a message "There haven't been any attempts to deploy
Patch Streams."

Figure 5: Deployment History (empty)

4. If there are Patch Streams that have been previously Approved, RPS will display a list of them with the overall deployment
status and show information about 1) the Patch Stream, 2) the Nodes and Targets that have Patches within the Patch
Stream, 3) the Patches within the Patch Stream, and 4) the telemetry about the Patch deployments:

Figure 6: Deployment History

V iewing Patch S tream S tatus From PowerShell

In PowerShell, inspect Patch Stream and Patch telemetry RPS cmdlets Get-RpsPatchStream and Get-RpsPatch.

1. Retrieve the Patch Stream by specifying Patch Stream's name in the:

-Name parameter of the Get-RpsPatchStream cmdlet:

$myPackageStream = Get-RpsPatchStream -Name 'MyPackageStream1'

2. Retrieve the Patches by inspecting that Patch Stream's Packages property:

$myPackageStream.Packages | Select-Object Id, PackageResourceItem

3. Retrieve the desired Patch by using the Get-RpsPatch cmdlet, specifying the -Id parameter:

$myPackage = Get-RpsPatch -Id '<GUID of Patch>'

4. Then, retrieve the status of all of the assigned Target Item deployments by inspecting the Patch Assignments'
DeployedStatus , Ensure , and EndPointState properties:

$myPackage.Assignments | Select-Object DeployedStatus, Ensure, EndPointState

How RPS Evaluates Deployment Status

How S treams, Patches, and Assignments D erive their S tatus

The Patch Stream Status and Patch Deployment Status are roll-up measures of how a Target Item reports up the successful
configuration of an RPS Patch.

A Target Item can be assigned a Patch via a RPS Package Assignment (a templatized Resource Assignment).

Within that assignment, RPS tracks the desired state of the Patch (Present (installed) or Absent (uninstalled)).

Whenever the Target Item attempts to reach the desired state, it reports status back through to the Master RPS (Parent Node)
Configuration Management Database (CMDB) via the Resource Assignment.

The Target Items will report these statuses on the Patch deployment:

Pending

Processing

Error

Superseded

(Successful) IsPresentAndDesirePresent

(Successful) IsAbsentAndDesireAbsent

(Failed) IsPresentAndDesireAbsent

(Failed) IsAbsentAndDesirePresent

(Failed) IsBelowMinPatchSystemVersion

(Failed) IsAboveMaxPatchSystemVersion

The Patch within the Stream updates its status as Successful when all the Target Items have successfully reached the desired state
(IsPresentAndDesirePresent or IsAbsentAndDesireAbsent) for the assigned Patch.

The Patch Stream updates its status as Successful when all the patches within it have reached the Successful state.

Patch Assignment and S tatus Flow D iagram

See the article RPS Patch Management Workflow diagram for more information on how Patches are assigned.

How to View All Patches
Last updated on August 3, 2021.

Last Reviewed and Approved on PENDING REVIEW

From the G raphical User I nterface

Using the RPS Graphical User Interface (GUI), users can view patches on the patches page of the RPS GUI

1. Launch the RPS Website and navigate to the Patches Page (Distribution > Patches)

Figure 1: View all patches

2. From this page you can view all patches in the CMDB

Figure 2: View all patches

D isable or Enable Patches

Enable a Patch

To enable a patch, click on the button labeled Enable next to the patch you want to enable.

Figure 3: Enable patch

[!Important]
Enabling a patch will also enable any dependencies that may be required for the patch.

D isable a Patch

To disable a patch, click on the button labeled Disable next to the patch you want to disable.

Figure 4: Disable patch

[!Important]
Disabling a patch will also disable any dependencies that may be required for the patch.

From PowerShell

In PowerShell, users can view all patches or specific patches using the RPS cmdlet Get-RpsPatch.

IMPORTANT

Start by establishing your working session in PowerShell ISE Administrator Mode.

1. Click on the Search Icon from the Start Menu.



Figure 1: Click on Search Icon.

1. Search for PowerShell ISE by typing PowerShell ISE in the Search bar.

Figure 2: Search for PowerShell ISE.

1. Click on Run As Administrator.

Figure 3: Open PowerShell ISE as Administrator.

1. Retrieve a specific patch by specifying the patch's name in the -Name parameter of the Get-RpsPatch cmdlet:

$myPackage = Get-RpsPatch -Name 'MyPackage1'

2. Retrieve all Patches in the CMDB by not specifying any parameters for the Get-RpsPatch cmdlet:

$myPackages = Get-RpsPatch

How to Enable and Disable CDN Communication
Last updated on 4 August, 2021.

Document Status: Document Feature Complete as of August 4, 2021; PENDING EXTERNAL REVIEW.

Overview
In order for content to replicate from one target node to another, the CDN communication protocol must be enabled on the node.
There are two different protocols used within RPS: DFSR and BITS. Each is dependent on whether the content is being replicated
to a target outside of the local domain or to a target within the local domain. Both DFSR and BITS can be enabled and disabled
using PowerShell and the RPS UI.

Prerequisites
Users enabling or disabling CDN communication should be assigned CDN Sync or RPS Admin permissions.

DFSR
DFSR is the Distributed File System Replication windows service, and runs on RPS servers. This is a multi-master replication
engine which allows synchronization of folders between servers. DFSR is used when content is being replicated to a target node
within the local domain. This protocol is faster than BITS and should be used whenever feasible.

WARNING

DFSR cannot be used to send content to a target outside the local domain.

BITS
BITS is the Background Intelligent Transfer Service, a windows service which facilitates asynchronous, prioritized, and throttled
transfer of files between machines using idle network bandwidth. BITS is used when content is being sent to a target node outside
of the local domain. While this protocol is also capable of sending content within the local domain, it is much slower than DFSR
and therefore should not be enabled for local domain replication.

TIP

BITS should only be used to replicate content outside of the local domain.

Enable/Disable CDN Using PowerShell
In PowerShell, the cmdlet Enable-RpsCdn is used in conjunction with $true to enable, or $false to disable, the CDN
communication protocols, as shown in the following examples:

Enable D FS R

Enable-RpsCdn -Dfsr $true

D isable D FS R

Enable-RpsCdn -Dfsr $false

Enable B I TS





Enable-RpsCdn -Bits $true

D isable B I TS

Enable-RpsCdn -Bits $false

Enable D FS R and B I TS

Enable-RpsCdn -Dfsr $true -Bits $true

D isable D FS R and B I TS

Enable-RpsCdn -Dfsr $false -Bits $false

Enable D FS R and D isable B I TS

Enable-RpsCdn -Dfsr $true -Bits $false

D isable D FS R and Enable B I TS

Enable-RpsCdn -Dfsr $false -Bits $true

Enable/Disable CDN Using the RPS UI
DFSR and BITS may also be enabled or disabled using the RPS UI. To accomplish this, follow the 4-step process below:

1. Access the RPS UI website using the following URL convention: https://<server hosting Rps UI>:8080

2. If the browser does not immediately open to the local node, users can access it by selecting "Targeting" from the menu
ribbon and clicking Nodes, as shown in the following figure:

Figure 1: Navigate to the local node.

From this screen, users can then select the desired node by clicking the name of the node from the list. Shown as "Default"

in the following figure:

Figure 2: Select the desired node.

3. Under the "Data Replication" section, click Edit and a "Data Replication Settings" box will appear.

Figure 3: Data Replication Settings box.

4. Check to Enable or UnCheck to Disable the appropriate CDN Communication protocol, then click Save to apply your
settings, as shown in the following figure:

Figure 4: Enable/Disable CDN from RPS UI.

How to Create and Use Patch Chains
Last updated on July 30, 2021.

Last Reviewed and Approved on PENDING REVIEW

Overview
Certain patches require one or more legacy patches to be installed before the current patch will run or install successfully. When
this happens, a patch stream is created containing all the required versions of the patch. This is called a patch chain.

How is a Patch Chain Different from a Patch Stream?
Patch chains and patch streams are both created using the New-RPSPatchStream cmdlet. However, a patch chain is a patch
stream which contains multiple versions of one specific patch type. In contrast, a patch stream may contain many different
application types. When a patch chain is loaded, the application versions will be sorted and installed in sequential order. This is
similar to a Dependency, except that the patch names much be identical in a patch chain, and the version numbers determine the
order of patching. For more information on Dependencies, see the DependsOn Element section in the RPS Patch Manifest
Definition article.

How a Patch Chain Works
Patch chains must have identical Patch Name values, (which are case sensitive), and include the Patch Version in the name as well.
The Patch Version determines the order that the patches will be installed. When the LCM (Local Configuration Manager) executes
on a target, it will attempt to install the next highest version of a patch in a chain. If none of the patches in the chain are installed,
then it will start installation with the lowest version, then work its way up the version chain until the highest version is installed.

There are two events that can cause a chain to stop processing all patches:

An error occurs during installation of the previous patch in the chain.
The patch is outside the current Maintenance Window. For more information on Maintenance Windows, see How to Use
Maintenance Windows.

WARNING

Patches with a version less than the currently installed patch in the chain will no longer be tested by DSC to verify installation status. To resolve
this, the highest installable patch in the chain must be uninstalled and the target system must re-install the entire chain by starting over with the
lowest version.

Patch Version Constraints
Version numbers consist of two to four segments: major, minor, build, and revision, as discussed in the table below:

S EG MENT T YPE S EG MENT D ES CR IPTION

Major Required First Major rewrite of product between major numbers. Backwards compatibility cannot be assumed.

Minor Required Second Indicates significant enhancement with the intention of backwards compatibility where all major
numbers are the same.

Build Optional Third Indicates when processor, platform, or compiler changes.



Revision Optional Fourth Usually indicates a minor fix or patch for security hole.

S EG MENT T YPE S EG MENT D ES CR IPTION

Example: .NET Framework 4.7.0

Where the 4 is the major and indicates that this may not be backwards compatible with .NET versions where majors are
lower than 4. For example: .NET Framework 4.7.0 may not be backwards compatible with .NET Framework 3.5.0.
Where the 7 is the minor and indicates there has been an enhancement added to version 4, typically backwards compatible
with lower minor numbers where the major number is the same. For example: .NET Framework 4.7 would be backwards
compatible with .NET Frameworks 4.5, but not .NET Framework 3.5.
Where the 0 is the build and indicates that this is the first release of version 4.7.0. Higher build numbers indicate minor
changes and are backwards compatible with .NET Framework applications where the major and minor numbers are the
same.

To Create a Patch Chain
To ensure a patch chain is created properly, the following conditions apply:

1. Each of the patches in the chain must have the exact same name when they are created in REACTR, with version numbers
following the conventions stated above. An example follows:

Correct:

.NET Framework 4.7.0

.NET Framework 4.8.0

.NET Framework 5.0.0

Notice that the name .NET Framework is the same in all three versions of the application. Variations of the application name
will not be executed properly. An example follows:

Incorrect:

MS .NET Framework
.NET Frmwork 3.5
.NET_Framework4_7

NOTE

Patch names are case sensitive and must be exact to be processed sequentially.

2. When patches are copied to the RPS node to create the patch chain, all patches must reside in the same folder.

3. Create the patch chain using the New-RPSPatchStream cmdlet as shown in the following example:

New-RPSPatchStream -Name MyPatchChainExample -Path C:\MyPatchChain

For more information on how to use the New-RPSPatchStream PowerShell cmdlet, see How To Load a Patch Stream.

4. Approve the Patch Chain. See How to Approve and Reject Patch Streams for detailed instructions on accomplishing this
step.

Once the patches sync through the CDN (Content Delivery Network) and are loaded onto the RPS node, the DSC (Desired State
Configuration) will run to make sure the patch chain installs the applications in the right order.



Patch Telemetry UI
Last updated on September 16, 2021.

Document Status: Document Developer Quality Complete.

IMPORTANT

Patch Telemetry UI will only work with a modern browser (Edge v93.0+ and Firefox v92.0+).

Documentation bundled with Patch Telemetry UI is accurate as of 9/16/2021.

Updated documentation can be found at: https://reactr.azurewebsites.us

Introduction
The purpose of the Patch Telemetry UI is to review the patching status for the nodes under the root node.

NOTE

Patch Telemetry UI is only available at the root node. The telemetry files will only exist for RPS v4.0 nodes.

How to Use the Patch Telemetry Desktop Application
This is a desktop application that will be installed on the root node from the Azure image.

Set the Patch Telemetry Folder Location

Open the appsettings.json configuration file and update the value for CDNFilePath. This is the path to the patch telemetry data
files stored by the packaging service. This data is synced between the root and child nodes using RPS.CDN.

NOTE

By default, the path is C:/CDN/PatchTelemetry .

Application

Once the desktop application is opened, you can select the available telemetry nodes in the left-hand side panel.

Figure 1: RPS Patch Telemetry UI landing page.

The list of available nodes can be filtered. To view the filter options, click the advanced filter icon � at the top of the list of nodes in
the left-hand side panel.







Figure 2: RPS Patch Telemetry UI advanced filter.

Once a node is selected, the available telemetry data will be displayed in the Node Details panel on the right. The details panel
groups the data by patch stream.

Figure 3: Select a node from the list to view the related telemetry data.

Using the Filter by status... dropdown in the Node Details panel, you can filter the data by the following patch stream statuses:

Figure 4: RPS Patch Telemetry UI Icon Legend.

Comparing Mult iple Nodes

At the top of the left-hand side panel, there is a Compare toggle that enables "compare mode". By toggling this switch, you can
compare two nodes.

NOTE

Only two nodes can be compared with the Compare toggle.



Figure 5: Node Details panel with expanded data (Compare mode off).

Figure 6: Node Details panel with expanded data (Compare mode on).

Figure 7: Node Details panel with compare node selected (Compare mode on).

Troubleshooting
Unable to Reach the Patch Telemetry U I Home Page

Issue: Attempting to reach the Patch Telemetry UI home page in a browser does not show a web page.

Remedy Steps:

Verify PatchTelemSvc is running.
Make sure browser version is correct (Edge/Firefox).
Verify correct home page for deployed Patch Telemetry UI.

Empty Node Panel

Issue: The list of available nodes on the left-hand side panel is empty on startup.

Remedy steps:

Make sure the browser version is correct (Edge/Firefox).
Verify the appsettings config for CDNFilePath is correct.
Verify valid files exist in the CDN Patch Telemetry folder.

Sidewinder
Last updated on August 25, 2021.

Document Status: Document Developer Quality Complete.

IMPORTANT

Documentation bundled with Sidewinder is accurate as of 9/20/2021.

Updated documentation can be found at: https://reactr.azurewebsites.us

Introduction
Sidewinder is an application that enables sideloading of approved patch streams from one RPS instance to another.

Prerequisites
G eneral

Permissions to execute an application.
Non-administrative permissions to the current user's My Documents.
SMB ports and protocols to RPS instance (source and target).
HTTP ports and protocols to RPS instance (source and target, if target is 4.0).

Expor t

Access to RPS 4.0 CDN with either logged in user or alternate account with username and password.
Access to RPS 4.0 API (ports and protocols only; no RPS RBAC needed).
Access to file system to create archive (.zip file).

Impor t

Access to RPS 4.0 or 3.1 CDN with either logged in user or alternate account with username and password.
Access to RPS 4.0 API (when importing to RPS 4.0).
Source patch stream archive created previously by Sidewinder from another instance of RPS.

Settings
A valid configuration must be specified in settings for all of the tabs in Sidewinder to be accessible. The Save button must be
selected for updated configurations to take effect. Settings will be persisted to disk for that particular user.

R P S Version

This setting only impacts importing, as Sidewinder only supports exporting from RPS 4.0.



Figure 1: Settings - RPS Version Selection

C D N / C redentials

S E T TING D E TAILS

CDN Path UNC path to the CDN folder. This can be network or local path. Click the Test Connection button to test the CDN
location in combination with the credentials specified (if any). Defaults to C:\CDN .

Connect Using
Different
Credentials

If checked, the user must specify a domain, user name, and password to connect to the CDN. By default, this setting is
not selected (unchecked).

Computer/Domain Computer, domain, or workgroup to provide when "Connect Using Different Credentials" is selected (checked).
Defaults to the current computer or domain (if domain joined).

User Name The user name to provide when "Connect Using Different Credentials" is selected (checked). Defaults to current logged
in user.

Password
The user name's password to provide when "Connect Using Different Credentials" is selected (checked). This data is
encrypted in memory and is destroyed when the application closes. For security reasons, the password will need to be
entered each time the application is opened.

Figure 2: Settings - CDN/Credential Section

UR Ls

S E T TING D E TAILS

RPS Telemetry
URL Specifies the URL to use for the RPS Telemetry page under the RPS Telemetry tab.

External
Telemetry URL Specifies the URL to use for the External Telemetry page under the RPS Telemetry tab.

RPS API Base
Endpoint

This is the base endpoint for the RPS API of the RPS instance to connect to. The base URLs are used during export
(version 4.0 only) and import to either:
a. Generate patch stream files on export, or
b. Ingest the new patch stream after import has been completed.

Figure 3: Settings - URLs Section

Saving

It is important to save the settings configuration once editing is complete. A confirmation message will appear when the settings
have been successfully saved.

Figure 4: Settings - Save Message

How to Export an RPS v4.0 Patch Stream
Follow these steps to export a patch stream from an RPS 4.0 instance.

1. On the Export tab, click Find Streams. This will load the patch streams available for export.

Figure 5: Export - Find Streams

2. Select the stream to export from the dropdown.

Figure 6: Export - Select Stream

3. Click Export.

Figure 7: Export - Click Export

4. Choose the file location to save to and click Save.

Figure 8: Export - Export File Picker

5. Check the Logging section for processing status and any error messages.

Figure 9: Export - Monitor Export Logs

How to Import a Patch Stream
Follow these steps to import to an RPS Instance.

NOTE

The steps for importing to RPS 4.0 and RPS 3.1 are the same. Be sure to pick the correct version of RPS from the Settings tab.

1. On the Import tab, click Browse... and navigate to the archive file.

Figure 10: Import - Browse for Archive File

2. Select the exported patch stream zip file, and then click Open.



Figure 11: Import - Select Patch Stream Zip File

3. Click Import.

Figure 12: Import - Click Import

IMPORTANT

When importing to RPS 3.1, you may see a PowerShell window open. Do not close this window during processing.

4. Check the Logging section for processing status and any error messages.

Figure 13: Import - Monitor Import Logs



	Table of Contents
	RPS Patching v4.0.0
	Introduction & Overview
	Introduction

	Design
	Access Control for Patch Management and Sync
	RPS Patch Management Workflow
	Sync Service Information
	RPS Patching Script Framework
	RPS Patch Manifest Definition
	New Configurations for CDN
	RPS Package Provider

	How To
	How to Patch Using RPS
	How to Create a Patchable Target Type
	How to Use Maintenance Windows
	How to Create an RPS Patch
	How to Disable or Enable an RPS Patch Using PowerShell
	How to Create a Patch Stream
	How to Transfer Non-Patching Content Delivery with RPS
	How to Load a Patch Stream
	How to Add a Patch Using PowerShell
	How to Remove a Patch From a Patch Stream
	How to Remove a Patch Stream
	Sideloading RPS Patches
	How to Approve and Reject Patch Streams
	Viewing Patch Stream Deployment Telemetry
	How to View All Patches
	How to Enable and Disable CDN Communication

	Additional Resources
	How to Create and Use Patch Chains

	External Patching
	Patch Telemetry UI
	Sidewinder

