
Table of Contents

 RPS v4.0.0
 Introduction & Overview

 Introduction
 RPS Terms and Definitions
 What's New in 4.0.0
 Release Notes
 Using the RPS API
 RPS Sample Scenario - Tourism
 RPS Install Guide
 Ports, Protocols, & Security Guide
 PostgreSQL
 Common Repo Process

 Design
 RPS Software Design
 RPS Configuration Management (DSC) Software Design
 Data

 RPS Data Persistence (CMDB) Software Design
 Configuration Changes to a Two Domain Architecture
 Data Validation Schema Definition
 Data Validation Integration in RPS

 Operations
 Certificate Management

 RPS Certificate Management Technical Design
 Certificate Usage
 Certificate Requirements for Linux Clients
 Certificate Request Plugin Configuration
 Certificate Request Process
 Certificate Rolling

 DSC Authoring
 Authoring RPS DSC Partial Configs
 Authoring RPS DSC Resources

 DSC Pull Server
 Introduction to DSC Pull Server

 RPS Settings for DSC Pull Server
 Runbooks and TaskMaps for DSC Pull Server

 Provisioning
 Create a Host Through RPS
 Create RPS Credentials
 Create a Virtual Machine Template Through RPS
 Create a Hyper-V Virtual Machine Through RPS
 RPS Building iPXE ROMs
 RPS PXE
 Configuring ESXi VMs to Use iPXE
 Using the Provisioning Service

 Task Management Service
 How to Add Runbooks to RPS
 How to Get and Set the Default Runbook Folder
 How to Modify Runbooks in RPS
 How to Remove Runbooks From RPS
 Task Management Service (TMS) Settings

 Tasking
 RPS Tasking Guide
 RPS Task Assignment Diagram
 Authoring RPS Runbooks

 Role-Based Access Control (RBAC)
 Introduction to RBAC
 How to Add and Remove User Roles
 How to Manage User Roles with PowerShell
 How to Import and Export Users with the Web User Interface
 How to Add and Remove Users with PowerShell
 How to Add and Remove Users with the Web User Interface
 Audit Entries

 Synchronization
 How to Add a Node to an Existing RPS Environment
 How to Self-Register Your Node
 How to Configure RPS Sync Settings

 Logging
 Introduction to Logging in RPS
 How to Control Logging Behavior in RPS
 Viewing RPS Logs

 Writing Log Messages
 Testing

 RPS Testing Strategy
 Additional Resources

 RPS Automation Package Guidelines
 Token Based Software Activation with PowerShell
 Token Based Software Activation with RPS Runbooks
 Token Based Software Activation Using the User Interface
 Token Based Software Activation with MNActivation Tool
 RPS Customization Guide - High Level Overview
 RPS IPSheet Parser
 RPS Instance Definition
 RPS Instance Definition Item
 RPS Instance Definition Node
 How to Configure Logging for the RPS API
 How to Configure RPS-Mapped Parameters
 Creating Dynamic Resource and Target Groups
 How to Import RPS Data Into the CMDB
 How to Export the CMDB

RPS v4.0.0
Last updated on June 28, 2021.

Last Reviewed and Approved on PENDING REVIEW

Welcome to the RPS v4.0.0 Documentation Landing Page
Rapid Provisioning System (RPS) is a flexible and powerful automation tool for managing software installation, updates, and
configuration.

RPS Vision Statement
To build a robust automation framework that empowers organizations to quickly and securely build, configure, and maintain their
systems' desired state over any network.

IMPORTANT

Documentation bundled with RPS v4.0.0 is accurate as of 9/20/2021.

Updated documentation can be found at: https://reactr.azurewebsites.us



RPS Definitions
Last updated on January 13, 2021.

Last Reviewed and Approved on PENDING REVIEW

RPS Specific Terms

TER M
ACR ONYM IF

E X IS TENT D EFINIT ION VER S ION

Master Key MasterKey
Master Key is a string value that's used to encrypt Protected Properties in the database.
The scope of the Master Key is domain-wide, meaning that all nodes/targets on the
domain will share the same Master Key.

1

Package A Package is a zip archive that contains an RPS manifest file that describes its contents and
how to deploy it, and deployable files needed to apply the Package. 1

Package
Stream A Package Stream is a grouping of Packages that can be approved or rejected as a group. 1

Rapid
Provisioning
System

RPS

"Rapid Provisioning System (RPS) is a generic, flexible automation and cyber compliance
framework, based on Azure technology, that enables: Provisioning of compute and non-
compute platforms and devices; patching (IAVA and App Updates); Configuration and
firmware deployment; Collection and reporting of logs and telemetry. RPS Components
consist (or will consist) of the following: API Sync Service CMDB SMA DSC PowerSTIG CDN
Provisioning Service User Interface Utilities"

5

Rapid
Provisioning
System
Application
Programming
Interface

RPS API
An application programming interface exposed directly by a series of PowerShell cmdlts or
indirectly by the RPS Web GUI that facilitates interaction with the RPS solution for IT
administrators.

5

Rapid
Provisioning
System Sync
Service

RPS Sync
Service

The RPS Sync service is used to synchronize RPS automation and reporting data between a
distributor (parent) RPS node and a subscriber (child) RPS node. Relationships between a
distributor and a subscriber are defined during RPS node registration and are stored in RPS
node records in the RPS database.

5

Resource
Assignments

Resource Assignments are the link between a single Resource (i.e. Certificates, Credentials,
Password Policies) and a single Target Item (i.e. Virtual Machine, Network Interface Card).
Resource Assignments are made to provide supplemental data to our task execution
engine. So, when a Task needs to be run on a target, it may require a certain Resource in
order to complete the execution.

1

Resource
Group A Resource group is a logical collection of resource items 1

Resource
Item ResourceItem

Resource Item's can be thought of as entities used to configure/provision Target Item's.
The two go hand-in-hand. Resource Item's typically represent virtual storage, password
policies, packages, base images, etc.

1

Task Map TaskMap Identifies a set of steps, what order they should be performed in, and what target items
those steps apply to. 1

Target Item TargetItem
TargetItem: Target Item's typically represent a device/machine, or a virtual representation
of that hardware. Some examples of Target Item types include routers, switches, vehicles,
virtual machines, etc. These are all items which RPS is intended to configure/provision.

1

TER M
ACR ONYM IF

E X IS TENT D EFINIT ION VER S ION

Developer Terms

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Agile N/A

Agile software development describes an approach to software development under which
requirements and solutions evolve through the collaborative effort of self-organizing and
cross-functional teams and their customer(s)/end user(s). It advocates adaptive planning,
evolutionary development, early delivery, and continual improvement, and it encourages
rapid and flexible response to change.

2

Agile Release
Train ART

The Agile Release Train (ART) is a long-lived team of Agile teams, which, along with other
stakeholders, develops and delivers solutions incrementally, using a series of fixed-length
Iterations within a Program Increment (PI) timebox. The ART aligns teams to a common
business and technology mission.

3

Applicaton
Lifecycle
Management

ALM

ALM is a set of pre-defined processes that start somewhere in the business as an idea, a
need, a challenge or a risk and then pass through different development phases such as
requirements definition, design, development, testing, deployment, release and
maintenance spanning across an entire lifecycle of a product. Throughout the ALM process,
each of these steps is closely monitored and controlled, followed by proper tracking and
documentation of any changes to the application.

2

Applicaton
Programming
Interface

API

In computer programming, an application programming interface (API) is a set of
subroutine definitions, protocols, and tools for building application software. In general
terms, it is a set of clearly defined methods of communication between various software
components.

2

Cmdlets N/A Used from within Azure PowerShell to control Azure resources. A cmdlet is a lightweight
Windows PowerShell script that performs a single function. 5

Continuous
Deployment CD Every change that passes automated tests are deployed to production automatically. 3

Continuous
Exploration CE

Continuous Exploration (CE) is the process of continually exploring the market and user
needs, and defining a Vision, Roadmap, and set of Features that address those needs. It’s
the first element in the four-part Continuous Delivery Pipeline, preceding Continuous
Integration (CI) Continuous Deployment (CD), and Release on Demand. Copyright © Scaled
Agile, Inc.

3

Change
Management ChgM (ITIL Service Transition) The process responsible for controlling the lifecycle of all changes,

enabling beneficial changes to be made with minimum disruption to IT services. 2

Configuration
Item CI

(ITIL Service Transition) Any component or other service asset that needs to be managed in
order to deliver an IT service. Information about each configuration item is recorded in a
configuration record within the configuration management system and is maintained
throughout its lifecycle by service asset and configuration management. Configuration
items are under the control of change management. They typically include IT services,
hardware, software, buildings, people and formal documentation such as process
documentation and service level agreements.

2

Continuous
Integrations CI In software engineering, continuous integration (CI) is the practice of merging all developer

working copies to a shared mainline several times a day. 3

Domain
Certificate
Authority

DCA This is a component of the Tactical Network Initialization & Configuration (TNIC) provided
name convention for each Certificate Authority within the Mission Nework PoR. 4

Epic N/A

An Epic is a container for a Solution development initiative large enough to require analysis,
the definition of a Minimum Viable Product (MVP), and financial approval prior to
implementation. Implementation occurs over multiple Program Increments (PIs) and follows
the Lean startup ‘build-measure-learn’ cycle.

3

GitHub N/A

GitHub is a web-based hosting service for version control using git. It is mostly used for
computer code. It offers all of the distributed version control and source code management
(SCM) functionality of git as well as adding its own features. It provides access control and
several collaboration features such as bug tracking, feature requests, task management, and
wikis for every project

2

Minimum
Viable Product MVP A minimum viable product (MVP) is a product with just enough features to satisfy early

customers, and to provide feedback for future product development. 3

Program
Increment PI

A Program Increment (PI) is a timebox during which an Agile Release Train (ART) delivers
incremental value in the form of working, tested software and systems. PIs are typically 8 –
12 weeks long. The most common pattern for a PI is four development Iterations, followed
by one Innovation and Planning (IP) Iteration. Copyright © Scaled Agile, Inc. "

3

Post
Implementation
Review

PIR

A Post-Implementation Review (PIR) is an assessment and review of the completed working
solution. It will be performed after a period of live running, some time after the project is
completed. There are three purposes for a Post-Implementation Review: 1. To ascertain the
degree of success from the project, in particular, the extent to which it met its objectives,
delivered planned levels of benefit, and addressed the specific requirements as originally
defined. 2. To examine the efficacy of all elements of the working business solution to see if
further improvements can be made to optimise the benefit delivered. 3. To learn lessons
from this project, lessons which can be used by the team members and by the organisation
to improve future project work and solutions."

2

Risk
Management
Framework

RMF

"The Risk Management Framework is a United States federal government policy and
standards to help secure information systems (computers and networks) developed by
National Institute of Standards and Technology. The two main publications that cover the
details of RMF are NIST Special Publication 800-37, ""Guide for Applying the Risk
Management Framework to Federal Information Systems"", and NIST Special Publication
800-53, ""Security and Privacy Controls for Federal Information Systems and
Organizations""."

2

Release Train
Engineer RTE

"The Release Train Engineer (RTE) is a servant leader and coach for the Agile Release Train
(ART). The RTE’s major responsibilities are to facilitate the ART events and processes and
assist the teams in delivering value. RTEs communicate with stakeholders, escalate
impediments, help manage risk, and drive relentless improvement. Copyright © Scaled
Agile, Inc. "

3

SAFe Agile
Team N/A

"The SAFe Agile Team is a cross-functional group of 5 to 11 people who have the
responsibility to define, build, test, and where applicable deploy, some element of solution
value—all in a short Iteration timebox. Specifically, the SAFe Agile Team incorporates the
Dev Team, Scrum Master, and Product Owner roles. Copyright © Scaled Agile, Inc. "

3

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Scrum N/A

Scrum is an agile framework for managing work with an emphasis on software
development. It is designed for teams of three to nine developers who break their work into
actions that can be completed within timeboxed iterations, called Sprints (30 days or less)
and track progress and re-plan in 15-minute stand-up meetings, called Daily Scrums.

2

System Demo N/A

"The System Demo is a significant event that provides an integrated view of new Features
for the most recent Iteration delivered by all the teams in the Agile Release Train (ART). Each
demo gives ART stakeholders an objective measure of progress during a Program
Increment (PI). Copyright © Scaled Agile, Inc. "

3

System of
Systems SOS

System of systems is a collection of task-oriented or dedicated systems that pool their
resources and capabilities together to create a new, more complex system which offers
more functionality and performance than simply the sum of the constituent systems.

4

Visual Studio VS

"Microsoft Visual Studio is an integrated development environment (IDE) from Microsoft. It
is used to develop computer programs, as well as web sites, web apps, web services and
mobile apps. Visual Studio uses Microsoft software development platforms such as
Windows API, Windows Forms, Windows Presentation Foundation, Windows Store and
Microsoft Silverlight. It can produce both native code and managed code. Visual Studio
includes a code editor supporting IntelliSense (the code completion component) as well as
code refactoring. The integrated debugger works both as a source-level debugger and a
machine-level debugger. Other built-in tools include a code profiler, forms designer for
building GUI applications, web designer, class designer, and database schema designer. It
accepts plug-ins that enhance the functionality at almost every level—including adding
support for source control systems (like Subversion) and adding new toolsets like editors
and visual designers for domain-specific languages or toolsets for other aspects of the
software development lifecycle (like the Team Foundation Server client: Team Explorer)."

2

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Administrator Terms

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Address
Resolution
Protocol (For
IPv4)

ARP
The Address Resolution Protocol (ARP) is a communication protocol used for discovering
the link layer address, such as a MAC address, associated with a given network layer
address, typically an IPv4 address

4

Assured
Compliance
Assessment
Solution

ACAS

The Assured Compliance Assessment Solution (ACAS) is an integrated software solution
that provides automated network vulnerability scanning, configuration assessment, and
network discovery. ACAS consists of a suite of products to include the Security Center,
Nessus Scanner and the Nessus Network Monitor (formerly the Passive Vulnerability
Scanner)

2

Automated
Comms
Engineering
Software

ACES

ACES is real-time, tactical network and planning software. ACES supports the Soldier Radio
Waveform (SRW) and the Adaptive Wideband Networking Waveform (ANW2). ACES assists
the operator with planning, engineering, delivering and managing radio waveform files via
an XML format.

4

Active Directory AD

Active Directory (AD) is a directory service that Microsoft developed for Windows domain
networks. It is included in most Windows Server operating systems as a set of processes
and services. Initially, Active Directory was only in charge of centralized domain
management. Starting with Windows Server 2008, however, Active Directory became an
umbrella title for a broad range of directory-based identity-related services.A server
running Active Directory Domain Services (AD DS) is called a domain controller. It
authenticates and authorizes all users and computers in a Windows domain type network
—assigning and enforcing security policies for all computers and installing or updating
software. For example, when a user logs into a computer that is part of a Windows
domain, Active Directory checks the submitted password and determines whether the user
is a system administrator or normal user. Also, it allows management and storage of
information, provides authentication and authorization mechanisms, and establishes a
framework to deploy other related services: Certificate Services, Federated Services,
Lightweight Directory Services and Rights Management Services."

2

Azure N/A

Microsoft Azure (formerly Windows Azure) /ˈæʒər/ is a cloud computing service created by
Microsoft for building, testing, deploying, and managing applications and services through
a global network of Microsoft-managed data centers. It provides software as a service
(SaaS), platform as a service (PaaS) and infrastructure as a service (IaaS) and supports many
different programming languages, tools and frameworks, including both Microsoft-specific
and third-party software and systems.

2

Battle Command
Sustainment
Support Sys.

BCS3
The Battle Command Sustainment & Support System (BCS3) integrates multiple data
sources into one program and provides commanders with a visual layout of battlefield
logistics

4

Blob Storage N/A
Azure Blob storage is a service that stores unstructured data in the cloud as objects/blobs.
Blob storage can store any type of text or binary data, such as a document, media file, or
application installer.

2

Blue Force
Tracker BFT

Blue force tracking is a United States military term for a GPS-enabled capability that
provides military commanders and forces with location information about friendly military
forces. In NATO military symbology, blue typically denotes friendly forces. The capability
provides a common picture of the location of friendly forces and therefore is referred to as
the blue force tracker

4

BFT Gateway
Node BGN Blue Force Tracker Gateway Node 4

Background
Intelligent
Transfer Service

BITS
BITS (Background Intelligent Transfer Service), managed through Windows PowerShell
cmdlets, is a Windows component which facilitates asynchronous, prioritized, and throttled
transfer of files between machines using idle network bandwidth.

5

Baseband
Processing Unit
(HNR)

BPU
A baseband processor (also known as baseband radio processor, BP, or BBP) is a device (a
chip or part of a chip) in a network interface that manages all the radio functions (all
functions that require an antenna)

4

Cloud
computing N/A

Cloud computing, also on-demand computing, is a kind of Internet-based computing that
provides shared processing resources and data to computers and other devices on
demand.

2

Configuration
Management
Database

CMDB

(ITIL Service Transition) A database used to store configuration records throughout their
lifecycle. The configuration management system maintains one or more configuration
management databases, and each database stores attributes of configuration items, and
relationships with other configuration items.

2

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Distributed File
System
Replication

DFSR Refers to Distributed File System Replication cmdlets and is executed from within Windows
PowerShell 5

Dynamic Host
Configuration
Protocol

DHCP

The Dynamic Host Configuration Protocol (DHCP) is a network management protocol used
on TCP/IP networks whereby a DHCP server dynamically assigns an IP address and other
network configuration parameters to each device on a network so they can communicate
with other IP networks. A DHCP server enables computers to request IP addresses and
networking parameters automatically from the Internet service provider (ISP), reducing the
need for a network administrator or a user to manually assign IP addresses to all network
devices. In the absence of a DHCP server, a computer or other device on the network
needs to be manually assigned an IP address, or to assign itself an APIPA address, which
will not enable it from communicating outside its local subnet.

2

Defense
Information
Systems
Network

DISN

The Defense Information System Network has been the United States Department of
Defense's enterprise network for providing data, video and voice services for 40 years. The
Defense Information System Network is a worldwide-protected telecommunications
network that enables the exchange of information in an interoperable and global space,
partitioned by security demands, transmission requirements, and geographic needs of
targeted end-user communities. The DISN offers a selection of integrated standards-based
services to fulfill these connectivity needs. The services provide Defense Information
Systems Agency mission partners with capability options to support diverse
telecommunication requirements for organizations focused on, but not limited to, the
Department of Defense

2

Definitive Media
Library DML

(ITIL Service Transition) One or more locations in which the definitive and authorized
versions of all software configuration items are securely stored. The definitive media library
may also contain associated configuration items such as licences and documentation. It is a
single logical storage area even if there are multiple locations. The definitive media library is
controlled by service asset and configuration management and is recorded in the
configuration management system.

2

Domain Name
Server DNS

"A name server is a computer application that implements a network service for providing
responses to queries against a directory service. It translates an often humanly meaningful,
text-based identifier to a system-internal, often numeric identification or addressing
component. This service is performed by the server in response to a service protocol
request. An example of a name server is the server component of the Domain Name
System (DNS), one of the two principal namespaces of the Internet. The most important
function of DNS servers is the translation (resolution) of human-memorable domain names
and hostnames into the corresponding numeric Internet Protocol (IP) addresses, the
second principal name space of the Internet which is used to identify and locate computer
systems and resources on the Internet."

2

Desired State
Configuration DSC

DSC gives us a declarative model for system configuration management. What that really
means is that we can specify how we want a workstation or server (a ‘node’) to be
configured and we leave it to PowerShell and the Windows Workflow engine to make it
happen on those target ‘nodes’. We don’t have to specify how we want it to happen. The
main advantages of DSC are:to simplify your sysadmin task by configuring one or more
devices automatically, to be able to configure machines identically with the aim to
standardise them, to ensure, at a given time, that the configuration of a machine always be
identical to its initial configuration, so as to avoid drift, deployment on demand as a Cloud
strategy, or ‘en masse’, is largely automated and simplified"

2

Domain Services
Controller DSC

This is a component of the Tactical Network Initialization & Configuration (TNIC) provided
name convention for each Active Directory Domain Controller within the Mission Nework
PoR.

4

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Early Life
Support ELS

(ITIL Service Transition) A stage in the service lifecycle that occurs at the end of
deployment and before the service is fully accepted into operation. During early life
support, the service provider reviews key performance indicators, service levels and
monitoring thresholds and may implement improvements to ensure that service targets
can be met. The service provider may also provide additional resources for incident and
problem management during this time.

2

Emergency
Change
Advisory Board

ECAB
(ITIL Service Transition) A subgroup of the change advisory board that makes decisions
about emergency changes. Membership may be decided at the time a meeting is called,
and depends on the nature of the emergency change.

2

Environment
Control Unit ECU Air Conditioning Unit 4

End User Device EUD Typically an NSA Android approved operating system loaded on a commercial device such
as a cell phone or tablet, loaded with Army custom software for use by soldiers in the field 4

Incident N/A
(ITIL Service Operation) An unplanned interruption to an IT service or reduction in the
quality of an IT service. Failure of a configuration item that has not yet affected service is
also an incident – for example, failure of one disk from a mirror set.

2

Information
Assurance IA

Information assurance (IA) is the practice of assuring information and managing risks
related to the use, processing, storage, and transmission of information or data and the
systems and processes used for those purposes. Information assurance includes protection
of the integrity, availability, authenticity, non-repudiation and confidentiality of user data.

2

Infrastructure as
a Service IaaS

The capability provided to the consumer is to provision processing, storage, networks, and
other fundamental computing resources where the consumer is able to deploy and run
arbitrary software, which can include operating systems and applications. The consumer
does not manage or control the underlying cloud infrastructure but has control over
operating systems, storage, and deployed applications; and possibly limited control of
select networking components

2

Information
Assurance
Vulnerability
Alert

IAVA

An information assurance vulnerability alert (IAVA) is an announcement of a computer
application software or operating system vulnerability notification in the form of alerts,
bulletins, and technical advisories identified by DoD-CERT, a division of the United States
Cyber Command.

2

Information
Assurance
Vulnerability
Management

IAVM Process responsible for the management of IAVAs, IAVBs (Information Assurance
Vulnerability Bulletins) and their implementation to the baseline. 2

Initial
Operational
Capability

IOC Initial operating capability or Initial operational capability (IOC) is the state achieved when
a capability is available in its minimum usefully deployable form. 2

Internet of
Things IoT The interconnection via the Internet of computing devices embedded in everyday objects,

enabling them to send and receive data. 2

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Internet
Protocol IP

"The Internet Protocol (IP) is the principal communications protocol in the Internet
protocol suite for relaying packets across network boundaries. Its routing function enables
internetworking, and essentially establishes the Internet. IP has the task of delivering
packets from the source host to the destination host solely based on the IP addresses in
the packet headers. For this purpose, IP defines packet structures that encapsulate the
data to be delivered. It also defines addressing methods that are used to label the
datagram with source and destination information."

2

Known Error
Database KEDB

(ITIL Service Operation) A database containing all known error records. This database is
created by problem management and used by incident and problem management. The
known error database may be part of the configuration management system, or may be
stored elsewhere in the service knowledge management system.

2

Netcentric
Waveform NCW Given sufficient satellite bandwidth, the NCW connected TCNs and PoPs to the network

and provided sufficient data flow while at-the-halt and on-the-move. 2

Network Centric
Waveform NCW

Network Centric Waveform (NCW) capability, is a dynamic robust waveform that optimizes
bandwidth and satellite utilization. One of the key attributes of NCW is that it facilitates
communication between the at-the-halt WIN-T Increment 1 and the on-the-move
Increment 2, increasing interoperability so the two generations of equipment can "talk"
seamlessly on the battlefield.

4

Network
Operations NetOps

"NetOps is defined as the operational framework consisting of three essential tasks,
Situational Awareness (SA), and Command & Control (C2) that the Commander (CDR) of
US Strategic Command (USSTRATCOM), in coordination with DoD and Global NetOps
Community, employs to operate, manage and defend the Global Information Grid (GIG) to
ensure information superiority for the United States. Tactical Network Operations (NetOps)
Management System (TNMS) is a scalable, modular NetOps capability that operates on
multiple client or server platforms. The TNMS will facilitate decision making necessary to
quickly identify network problems, shift resources, change configurations and coordinate
the management of the critical network infrastructure supporting mission command
functions."

2

Network
Management
System

NMS Application written by Lockheed Martin and Generaly Dynamics (GD) to perform
centralized operation, management, and troubleshooting of WIN-T Inc 2 platforms. 4

Network
Operations
Center

NOC

A network operations center (NOC, pronounced like the word knock), also known as a
"network management center", is one or more locations from which network monitoring
and control, or network management, is exercised over a computer, telecommunication or
satellite network.

2

Network
Operations and
Security Center

NOSC
Network Operations and Security Center (NOSC). The NOSC supported the unit’s network
management mission at division and brigade, but needed additional Soldiers and tools at
battalion and company.

2

Network
Recovery
Monitoring

NRM Linux VM which provides automated command and control of select components on WIN-
T vehicles. 4

Network
Services
Gateway

NSG Encryption device for JBC-P which enables cross-platform functionality within the JCR / BFT
family of systems. 4

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Network Time
Protocol NTP Network Time Protocol (NTP) is a networking protocol for clock synchronization between

computer systems over packet-switched, variable-latency data networks. 2

Operating
Environment
Management

OEM Name for the VM which hosts the NMS application on PoR nodes. 4

Operational
Level Agreement OLA

"(ITIL Continual Service Improvement) (ITIL Service Design) An agreement between an IT
service provider and another part of the same organization. It supports the IT service
provider’s delivery of IT services to customers and defines the goods or services to be
provided and the responsibilities of both parties. For example, there could be an
operational level agreement: � Between the IT service provider and a procurement
department to obtain hardware in agreed times � Between the service desk and a support
group to provide incident resolution in agreed times. "

2

PowerShell PS

"Windows PowerShell is a task-based command-line shell and scripting language designed
especially for system administration. Built on the .NET Framework, Windows PowerShell
helps IT professionals and power users control and automate the administration of the
Windows operating system and applications that run on Windows. Built-in Windows
PowerShell commands, called cmdlets, let you manage the computers in your enterprise
from the command line. Windows PowerShell providers let you access data stores, such as
the registry and certificate store, as easily as you access the file system. In addition,
Windows PowerShell has an expression parser and a fully developed scripting language."

2

Request for
Change RFC

(ITIL Service Transition) A formal proposal for a change to be made. It includes details of
the proposed change, and may be recorded on paper or electronically. The term is often
misused to mean a change record, or the change itself.

2

Regional Hub
Node RHN

"Regional Hub Nodes (RHNs) are the largest transport nodes for the Army’s tactical
network. The five globally-located RHNs enable the Army to deploy forces anywhere in the
world in support of contingency operations, disaster relief or national emergency response.
The five RHNs are at the upper-most level of the Army’s tactical network architecture, and
their innovative baseband and satellite communications capabilities enable regionalized
reach-back to the Army’s global network. They enable the transport of information across
the tactical network in and out of theater and around the world. The RHNs operate out of
the conflict area and give the Soldier in the field immediate access to secure and non-
secure internet and voice communications anywhere on the globe. To provide tactical
users with secure, reliable connectivity worldwide, the Army has positioned RHNs in five
separate regions: Continental United States (CONUS) East and CONUS West, Central
Command, European Command and Pacific Command."

2

Security
Technical
Implementation
Guide

STIG

A Security Technical Implementation Guide (STIG) is a cybersecurity methodology for
standardizing security protocols within networks, servers, computers, and logical designs
to enhance overall security. These guides, when implemented, enhance security for
software, hardware, physical and logical architectures to further reduce vulnerabilities.

2

Tactical
Communications
Node

TCN

The Tactical Communications Node (TCN) provides the principal backbone element and
supports command post operations for the WIN-T Increment 2 network. The TCN provides
communication and networking equipment and allows the Soldier the ability to access the
network at a variety of security levels. While at-the-halt, the TCN is equipped with a 10
meter, extendable mast to improve line-of-sight connectivity and larger satellite
assemblage for high throughput.

2

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Tactical Server
Infrastructure TSI

Tactical Server Infrastructure (TSI) replaces the current disparate server hardware by
merging all operational and intelligence functions onto one common set of servers. TSI
enables more server capability and delivers a consistent approach for installation and
configuration, creating efficiencies in fielding, training and sustainment.

2

Virtual Machine VM

"In computing, a virtual machine (VM) is an emulation of a computer system. Virtual
machines are based on computer architectures and provide functionality of a physical
computer. Their implementations may involve specialized hardware, software, or a
combination. There are different kinds of virtual machines, each with different functions:
System virtual machines (also termed full virtualization VMs) provide a substitute for a real
machine. They provide functionality needed to execute entire operating systems. A
hypervisor uses native execution to share and manage hardware, allowing for multiple
environments which are isolated from one another, yet exist on the same physical
machine. Modern hypervisors use hardware-assisted virtualization, virtualization-specific
hardware, primarily from the host CPUs. Process virtual machines are designed to execute
computer programs in a platform-independent environment."

2

Virtual Machine
(MDA) MDA VM

Virtual Machine hosted within an MDA. These VMs are system virtual machines (also
termed full virtualization VMs) provide a substitute for a real machine. They provide
functionality needed to execute entire operating systems. A hypervisor uses native
execution to share and manage hardware, allowing for multiple environments which are
isolated from one another, yet exist on the same physical machine. Modern hypervisors
use hardware-assisted virtualization, virtualization-specific hardware, primarily from the
host CPUs.

4

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

General Terms

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Advanced Field
Artillery
Targeting Data
System

AFATDS

The Advanced Field Artillery Tactical Data System (AFATDS) is the Fire Support Command
and Control (C2) system employed by the U.S. Army and U.S. Marine Corps units to
provide automated support for planning, coordinating, controlling and executing fires and
effects. AFATDS prioritizes targets received from various sensors and performs attack
analysis using situational data combined with commander's guidance. The result is timely,
accurate and coordinated fire support options to engage targets using Army, Marine,
Navy and Air Force weapon systems. The system provides complete flexibility to manage
attacks on preplanned and time-sensitive targets. AFATDS supports weapon systems such
as mortars, field artillery cannons, rockets, close air support, attack helicopters, and Naval
Surface Fire Support (NSFS) systems. AFATDS also acts as a fire support ""server"" to LAN-
based and Tactical Internet-based clients, including the AFATDS Effects Management Tool
(EMT), and the USMC Command and Control Personal Computer (C2PC) EMT. AFATDS is
used in all U.S. Army echelons from weapons platoon to corps and in the Marine Corps
from firing battery to Marine Expeditionary Forces. AFATDS is installed aboard the U.S.
Navy LHA/LHD Class big deck amphibious ships to support Expeditionary Strike Groups
(ESGs) for amphibious operations

4

Army Battle
Command
Systems

ABCS

The Army Battle Command System (ABCS) is a digital Command, Control,
Communications, Computers and Intelligence (C4I) system for the US Army. It includes a
mix of fixed/semi-fixed and mobile networks. It is also designed for interoperability with US
and Coalition C4I systems.

4

Anti Jam AJ Used or intended to inhibit or prevent electronic jamming 2

Adaptive
Networking
Wideband
Waveform

ANW2

"The ANW2 provides a data link between the TOC and vehicles, with up to 30 radios in a
subnet. It provides simultaneous IP data and voice with integral situational awareness.
ANW2 is a self-healing, robust, IP-driven waveform that maximizes redundancy and limits
single point failures and networks"

4

Army National
Guard ARNG

The Army National Guard (ARNG), in conjunction with the Air National Guard, is a militia
force and a federal military reserve force of the United States. They are simultaneously
part of two different organizations, the Army National Guard of the several states,
territories and the District of Columbia (also referred to as the Militia of the United States),
and the Army National Guard of the United States. The Army National Guard is divided
into subordinate units stationed in each of the 50 states, three territories, and the District
of Columbia, and operates under their respective governors.

2

At the Halt ATH Not in motion 2

Brigade Combat
Team BCT

The brigade combat team (BCT) is the basic deployable unit of maneuver in the US Army.
A brigade combat team consists of one combat arms branch maneuver brigade, and its
assigned support and fire units. "The Brigade is normally commanded by a Colonel (O-6)
although in some cases a Brigadier General (O-7) may assume command." A brigade
combat team contains combat support and combat service support units necessary to
sustain its operations away from its parent division. BCTs contain organic artillery support,
formerly received from the division artillery (DIVARTY).

2

Battlefield
Surveillance
Brigade

BfSB

"The battlefield surveillance brigade (BfSB) was a United States Army
surveillance/reconnaissance formation introduced from 2006–2015. The United States
Army planned for the creation and transformation of nine intelligence brigades to a
'battlefield surveillance' role in 2007. The first battlefield surveillance brigade was deployed
the same year conducting Surveillance, Reconnaissance and Intelligence operations.
However, gathering information is only a part of the challenge it faces. Along with the
structural changes and intelligence capabilities, the sustainment capabilities of the brigade
also changed. The United States Army is currently reorganizing these BfSB formations into
expeditionary military intelligence brigades. These brigades were designed to be self-
sufficient Army modular forces."

2

Beyond Line of
Sight BLOS

Beyond Line-Of-Sight (BLOS) is a related term often used in the military to describe radio
communications capabilities that link personnel or systems too distant or too fully
obscured by terrain for LOS communications.

2

Command and
Control C2

Command and Control (C2) systems enable information superiority on the battlefield.
They provide the commander with the information to make effective decisions and they
provide the warfighter the capability to access the information necessary to complete their
mission.

2

Command and
Control Registry C2R

The Command and Control Registry (C2R) is the Address Book used by today's Army. It
dynamically coordinates and collaborates command and control naming, addressing,
network and operations data across many different types of military systems deployed
globally. It is utilized by our Army's systems as the on-line repository for addressing
information such as email addresses, military addresses and network information

4

Command
Control
Communications
Tactical

C3T

Program Executive Office Command, Control, Communications-Tactical (PEO C3T)
develops, acquires, fields and supports the Army’s tactical network, a critical priority that
brings information dominance to current and future Soldiers. The mobile tactical network
delivered by PEO C3T provides capability giving commanders a resilient, redundant, easy-
to-use and mobile interoperable tactical network.

2

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Command,
Control,
Communications,
Computers,
Intelligence,
Surveillance, and
Reconnaissance

C4ISR

The Command, Control, Communications, Computers, Intelligence, Surveillance and
Reconnaissance Evaluation Directorate (C4ISRED) focuses on systems in the areas of
mission command and integration, network, information and enterprise, databases and
software, Intelligence, Surveillance and Reconnaissance, and intelligence electronic warfare.

2

Command,
Control,
Communications,
Computers,
Combat Systems,
Intelligence,
Surveillance, and
Reconnaissance.

C5ISR
C4ISR has recently changed to C5ISR. C5ISR stands for Command, Control,
Communications, Computers, Combat Systems, Intelligence, Surveillance, and
Reconnaissance.

1

Change Advisory
Board CAB

(ITIL Service Transition) A group of people that support the assessment, prioritization,
authorization and scheduling of changes. A change advisory board is usually made up of
representatives from: all areas within the IT service provider; the business; and third
parties such as suppliers.

2

Combat Aviation
Brigades CABs

A Combat aviation brigade (CAB) is a multi-functional brigade-sized unit in the United
States Army that fields military helicopters, offering a combination of
attack/reconnaissance helicopters (AH-64 Apache), medium-lift helicopters (UH-60 Black
Hawk), heavy-lift helicopters (CH-47 Chinook), and MEDEVAC capability.

2

Common Access
Card CAC

The Common Access Card, also commonly referred to as the CAC or CAC card, is a smart
card about the size of a credit card. It is the standard identification for Active Duty United
States Defense personnel, to include the Selected Reserve and National Guard, United
States Department of Defense (DoD) civilian employees, United States Coast Guard
(USCG) civilian employees and eligible DoD and USCG contractor personnel. It is also the
principal card used to enable physical access to buildings and controlled spaces, and it
provides access to defense computer networks and systems. It also serves as an
identification card under the Geneva Conventions (esp. the Third Geneva Convention). In
combination with a personal identification number, a CAC satisfies the requirement for
two-factor authentication: something the user knows combined with something the user
has. The CAC also satisfies the requirements for digital signature and data encryption
technologies: authentication, integrity and non-repudiation.

2

Capital Expense CapEx

Capital expenditure or capital expense (capex) is the money a company spends to buy,
maintain, or improve its fixed assets, such as buildings, vehicles, equipment, or land. It is
considered a capital expenditure when the asset is newly purchased or when money is
used towards extending the useful life of an existing asset, such as repairing the roof.

2

Cryptographic
Ignition Key CIK

The CIK is a small device which can be loaded with a 128·bit sequence which is different
for each user. When the device is removed from the machine, that sequence is
automatically added (mod 2) to the unique key in the machine, thus leaving it stored in
encrypted form. When it is reattached, the unique key in the machine is decrypted, and it
is now ready to operate in the normal way. The analogy with an automobile ignition key is
close, thus the name. If one loses lose that key, they are still ok. unless the finder (or thief)
can match it with their machine. One gets a new CIK, etfectively changing the lock in the
cipher machine, and gets back in business.

4

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Configuration
Management
System

CMS

(ITIL Service Transition) A set of tools, data and information that is used to support service
asset and configuration management. The CMS is part of an overall service knowledge
management system and includes tools for collecting, storing, managing, updating,
analysing and presenting data about all configuration items and their relationships. The
CMS may also include information about incidents, problems, known errors, changes and
releases. The CMS is maintained by service asset and configuration management and is
used by all IT service management processes. See also configuration management
database.

2

Commanding
Officer CO

The commanding officer or, if the incumbent is a general officer, commanding general, is
the officer in command of a military unit. The commanding officer has ultimate authority
over the unit, and is usually given wide latitude to run the unit as they see fit, within the
bounds of military law. In this respect, commanding officers have significant
responsibilities, duties, and powers.

2

Company Co
A company is a military unit, typically consisting of 80–150 soldiers and usually
commanded by a major or a captain. Most companies are formed of three to six platoons,
although the exact number may vary by country, unit type, and structure.

2

Colorless
(Enclave) CO

The reason it is called "colorless" is that the Army often places color codes on certain
security enclaves, with secret typically being designated as red and unclassified as black.
Unlike previous enclaves, in the colorless core all of the data is encrypted, so no one can
tell whether the information is secret or unclassified; the "color" cannot be identified.
Unclassified information is just as hard to obtain as secret.

4

Control
Objectives for
Information and
Related
Technology

COBIT

COBIT (Control Objectives for Information and Related Technologies) is a good-practice
framework created by international professional association ISACA for information
technology (IT) management and IT governance. COBIT provides an implementable "set of
controls over information technology and organizes them around a logical framework of
IT-related processes and enablers.

2

Common
Operating
Environment

COE COE provides standards to unite existing programs and new technologies on a common
software foundation, simplifying development, integration, training and sustainment. 2

Communications
Security COMSEC

Communications security is the discipline of preventing unauthorized interceptors from
accessing telecommunications in an intelligible form, while still delivering content to the
intended recipients. In the North Atlantic Treaty Organization culture, including United
States Department of Defense culture, it is often referred to by the abbreviation COMSEC.
The field includes cryptographic security, transmission security, emissions security and
physical security of COMSEC equipment and associated keying material. COMSEC is used
to protect both classified and unclassified traffic on military communications networks,
including voice, video, and data. It is used for both analog and digital applications, and
both wired and wireless links."

2

Concept of
Operations CONOPS

"A Concept of Operations (CONOPS) is a verbal or graphic statement of a commander’s
assumptions or intent in regard to an operation or series of operations as defined by Joint
Publication 1-02 DoD Dictionary of Military and Associated Terms. It’s designed to give an
overall picture of an operation. In Acquisitions, a CONOPS is used to examine current and
new and/or proposed capabilities required to solve a current or emerging problem. It
describes how a system will be used from the viewpoints of its various stakeholders. This
provides a bridge between the often vague capabilities that a project begins with and the
specific technical requirements needed to make is successful. A CONOPS is a useful tool
that helps the user community write/refine their Initial Capabilities Documents (ICD),
System Requirements Document (SRD) and Capabilities Development Documents (CDD)."

2

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Continental
United States CONUS

The contiguous United States consists of the 48 adjoining U.S. states plus Washington,
D.C. (federal district), on the continent of North America. The term excludes the non-
contiguous states of Alaska and Hawaii, and all off-shore insular areas.

2

Communities of
Practice CoPs

Communities of Practice (CoPs) are organized groups of people who have a common
interest in a specific technical or business domain. They collaborate regularly to share
information, improve their skills, and actively work on advancing the general knowledge of
the domain.

3

Contracting
Officer's
Representative

COR

A Contracting Officer’s Representative (COR) is an individual authorized in writing by the
contracting officer to perform specific technical or administrative contract functions. The
COR must receive a written designation of their authority to act on behalf of the
contracting officer. The COR is not authorized to make any commitments or changes that
will affect price, quality, quantity, delivery, or any other term or condition of the contract.

2

Commercial Off
the Shelf COTS

In the context of the U.S. government, the Federal Acquisition Regulation (FAR) has
defined "COTS" as a formal term for commercial items, including services, available in the
commercial marketplace that can be bought and used under government contract. For
example, Microsoft is a COTS software provider. Goods and construction materials may
qualify as COTS but bulk cargo does not. Services associated with the commercial items
may also qualify as COTS, including installation services, training services, and cloud
services.

2

Command Post
of the Future CPOF

The United States Army's Command Post of the Future (CPOF) is a C2 software system
that allows commanders to maintain topsight over the battlefield; collaborate with
superiors, peers and subordinates over live data; and communicate their intent. Originally
a DARPA technology demonstration, in 2006 CPOF became an Army Program of Record.
It is integrated with the Army's Maneuver Control System and other products.

4

Capability Set 16 CS-16 U.S. Army tactical networks are gradually evolving through a series of upgrades called
“capability sets” that seek to apply lessons learned on the battlefield. 4

Critical Success
Factor CSF

Something that must happen if an IT service, process, plan, project or other activity is to
succeed. Key performance indicators are used to measure the achievement of each critical
success factor. For example, a critical success factor of ‘protect IT services when making
changes’ could be measured by key performance indicators such as ‘percentage reduction
of unsuccessful changes’, ‘percentage reduction in changes causing incidents’ etc.

2

Continual Service
Improvement CSI

(ITIL Continual Service Improvement) A stage in the lifecycle of a service. Continual service
improvement ensures that services are aligned with changing business needs by
identifying and implementing improvements to IT services that support business
processes. The performance of the IT service provider is continually measured and
improvements are made to processes, IT services and IT infrastructure in order to increase
efficiency, effectiveness and cost effectiveness. Continual service improvement includes the
seven-step improvement process. Although this process is associated with continual
service improvement, most processes have activities that take place across multiple stages
of the service lifecycle. See also Plan-Do-Check-Act.

2

Cipher Text CT

In cryptography, ciphertext or cyphertext is the result of encryption performed on
plaintext using an algorithm, called a cipher. Ciphertext is also known as encrypted or
encoded information because it contains a form of the original plaintext that is unreadable
by a human or computer without the proper cipher to decrypt it. Decryption, the inverse
of encryption, is the process of turning ciphertext into readable plaintext. Ciphertext is not
to be confused with codetext because the latter is a result of a code, not a cipher.

4

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Defense
Advanced GPS
Receiver

DAGR

The Defense Advanced GPS Receiver (DAGR; colloquially, "dagger") is a handheld GPS
receiver used by the United States Department of Defense and select foreign military
services. It is a military-grade, dual-frequency receiver, and has the security hardware
necessary to decode the encrypted P(Y)-code GPS signals.

4

Databridge
(CPOF) DB

"Single point of interface between CPOF and other ABCS systems such as FBCB2/JCR,
JBC-P, BCS3, TAIS, DCGS-A, etc. -Supports two-way exchange of data between the
various ABCS systems and CPOF. -Runs Microsoft IIS which is used to import images into
CPOF system via Drag and Drop or the Snagit application. -Provides A means to import
and export graphics in various formats."

4

Distributed
Computer
Environment

DCE
*Vendor independent distributed computing environment *Not an OS or an application
*An integrated set of services and tools that can be installed as a coherent environment
on top of an existing OS *Serves as a platform for building and running distributed apps

4

Division Div

"A division is a large military unit or formation, usually consisting of between 10,000 and
20,000 soldiers. Infantry divisions during the World Wars ranged between 8,000 and
30,000 in nominal strength. In most armies, a division is composed of several regiments
or brigades; in turn, several divisions typically make up a corps. Historically, the division
has been the default combined arms unit capable of independent operations. Smaller
combined arms units, such as the American Regimental combat team (RCT) during World
War II, were used when conditions favored them. In recent times, Modern Western
militaries have begun adopting the smaller Brigade combat team (similar to the RCT) as
the default combined arms unit, with the Division they belong to being less important."

2

Encrypted Data
Group (JBC-P
Tranceiver)

EDG

"The Joint Battle Command - Platform (JBC-P) program is the cornerstone of joint forces
Command and Control (C2) Situational Awareness (SA) and communications. JBC-P
provides secure Blue Force Tracking capability in Platforms and Command Posts, providing
soldiers and commanders a map-based Common Operating Picture of the battlefield, as a
result, reducing fratricide. The JBC-P program fields hardware (vehicle platform computer
systems, satellite transceivers, encryption devices, and ancillary equipment), software
capabilities, and will continue to leverage the Army's previous equipment investments by
installing the new JBC-P software on new hardware as well as existing Force XXI Battle
Command Brigade and Below (FBCB2) computer systems. JBC-P serves a primary role as
the basis of the Mounted Computing Environment (MCE), one of six (6) environments
within the Common Operating Environment (COE) framework. The COE is a standardized
set of computing technologies that enable secure and interoperable applications to be
rapidly developed and executed across a variety of computing environments. The MCE
leverages JBC-P hardware and software to consolidate and integrate multiple warfighting
systems in the Platform (Mounted) environment. This integrated MCE, with its open
standards, enhanced interoperability, and simplified end-user interface, will speed delivery
of the new Mission Command applications to the warfighter while improving the
effectiveness and value of current systems."

4

Frequency
Division Multiple
Access

FDMA

Frequency division multiple access (FDMA) is a channel access method used in multiple-
access protocols as a channelization protocol. FDMA gives users an individual allocation of
one or several frequency bands, or channels. It is particularly commonplace in satellite
communication. FDMA, like other multiple access systems, coordinates access between
multiple users.

4

Fires Brigade FiB

A Fires Brigade (FiB) was a military unit of the United States Army revolved around field
artillery. With recent structural changes, Fires Brigades were either inactivated and
reflagged as Division Artilleries (DIVARTY) or reorganized and redesignated as Field
Artillery Brigades.

2

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Final Operational
Capability or Full
Operational
Capability

FOC
For the United States Department of Defense military acquisition FOC is defined as "in
general attained when all units and/or organizations in the force structure scheduled to
receive a system have received it and have the ability to employ and maintain it.

2

Field Service
Representative FSR Contractor personnel tasked with software and hardware maintenance activities at the

customers deployed location. 2

Fiscal Year FY
A fiscal year (or financial year, or sometimes budget year) is a period used for calculating
annual ("yearly") financial statements in businesses and other organizations all over the
world.

2

Gigabits per
second Gbps

GigaBits or GigaBytes per Second) One billion bits or bytes per second. Gbps is a
measurement of peripheral data transfer or network transmission speed. The correct
abbreviation is b for bits and B for bytes; however, b and B are often interchanged.

2

Gigahertz (1000
MHz) GHz

The hertz (symbol: Hz) is the derived unit of frequency in the International System of Units
(SI) and is defined as one cycle per second. It is named for Heinrich Rudolf Hertz, the first
person to provide conclusive proof of the existence of electromagnetic waves. Hertz are
commonly expressed in multiples: 1 GHz = 1*10^9 H.

4

Global
Information Grid GIG

The Global Information Grid (GIG) is an all-encompassing communications project of the
United States Department of Defense. It is defined as a "globally interconnected, end-to-
end set of information capabilities for collecting, processing, storing, disseminating, and
managing information on demand to warfighters, policy makers, and support personnel."

2

Global
Positioning
System

GPS

"The Global Positioning System (GPS), is a satellite-based radionavigation system owned
by the United States government and operated by the United States Air Force. It is a
global navigation satellite system that provides geolocation and time information to a GPS
receiver anywhere on or near the Earth where there is an unobstructed line of sight to
four or more GPS satellites. Navigation: Soldiers use GPS to find objectives, even in the
dark or in unfamiliar territory, and to coordinate troop and supply movement. Target
tracking: Various military weapons systems use GPS to track potential ground and air
targets before flagging them as hostile.[citation needed] These weapon systems pass
target coordinates to precision-guided munitions to allow them to engage targets
accurately. Military aircraft, particularly in air-to-ground roles, use GPS to find targets.
Missile and projectile guidance: GPS allows accurate targeting of various military weapons
including ICBMs, cruise missiles, precision-guided munitions and artillery shells. Embedded
GPS receivers able to withstand accelerations of 12,000 g or about 118 km/s2 have been
developed for use in 155-millimeter (6.1 in) howitzer shells.[96] Search and rescue.
Reconnaissance: Patrol movement can be managed more closely."

4

Graphic Bearing
Indicator GBI

The Nett Warrior system will display a Soldier's GPS position and azimuth on a map using
a graphic bearing indicator. It also shows buddy icons of other Nett Warrior users on the
network, and any information regarding map locations that has been shared with other
users.

4

Highband
Networking
Radio

HNR

HNR utilizes directive beam technology to achieve a high-throughput mesh network over
long distances with enhanced spectrum efficiency. The radio has a number of advanced,
multi-layer security features that enable the passing of SCI-level (Sensitive
Compartmented Information) data. These include Advanced Encryption Standard (AES)
capability, tamper-proof labels, High Assurance Internet Protocol Encryption (HAIPE)
compatibility, a directional-beam antenna for Low Probability of Intercept (LPI), and a
secure transit case accessory with SIPRNET/NIPRNET network services. The HNR mesh
network is a "colorless core" capable of transporting secure and unsecure data over the
same network.

4

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Highband
Networking
Waveform

HNW A terrestial time division multiple access (TDMA) line-of-sight rafio frequency waveform
which provides lower latency and greater throughput for MN PoR vehicles. 4

Highband Radio
Frequency Unit HRFU A radio unit designed to utilize HNW to pass data over the WAN. Contains multiple feed

horns to facilitate on the move connectivity; semi-omnidirectional capable. 4

Integrated
Bridge IB The central point of control for vehicle systems (electrical power, cameras, FBCB2) on the

MAT-V platform. Controls power to all MN components. 4

Intelligence
Community IC

The United States Intelligence Community (IC) is a federation of 16 separate United States
government agencies that work separately and together to conduct intelligence activities
to support the foreign policy and national security of the United States. Member
organizations of the IC include intelligence agencies, military intelligence, and civilian
intelligence and analysis offices within federal executive departments. The IC is overseen
by the Office of the Director of National Intelligence (ODNI), which itself is headed by the
Director of National Intelligence (DNI), who reports to the President of the United States.

2

Identity and
Access
Management

IdAM
Identity management, also known as identity and access management (IAM) is, in
computer security, the security and business discipline that "enables the right individuals
to access the right resources at the right times and for the right reasons".

2

Incident
Management IM

(ITIL Service Operation) The process responsible for managing the lifecycle of all incidents.
Incident management ensures that normal service operation is restored as quickly as
possible and the business impact is minimized

2

Intelligence and
Security
Command

INSCOM

The United States Army Intelligence and Security Command (INSCOM) is a direct
reporting unit that conducts intelligence, security, and information operations for U.S.
Army commanders and national decision makers. INSCOM is headquartered at Fort
Belvoir, Virginia.

2

Information
Technology
Information
Library

ITIL

A set of best-practice publications for IT service management. Owned by the Cabinet
Office (part of HM Government), ITIL gives guidance on the provision of quality IT services
and the processes, functions and other capabilities needed to support them. The ITIL
framework is based on a service lifecycle and consists of five lifecycle stages (service
strategy, service design, service transition, service operation and continual service
improvement), each of which has its own supporting publication. There is also a set of
complementary ITIL publications providing guidance specific to industry sectors,
organization types, operating models and technology architectures. See www.itil-
officialsite.com for more information

2

Information
Technology
Service
Management

ITSM

IT service management (ITSM) refers to the entirety of activities – directed by policies,
organized and structured in processes and supporting procedures – that are performed by
an organization to design, plan, deliver, operate and control information technology (IT)
services offered to customers. It is thus concerned with the implementation of IT services
that meet customers' needs, and it is performed by the IT service provider through an
appropriate mix of people, process and information technology.

2

Joint Automated
CEOI System JACS

Automated Communications Engineering Software/Joint Automated Communications
Electronics Operating Instructions (CEOI) System (ACES-JACS) that helps with COMSEC
keying, information key tags and signal operating instructions development.

4

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Joint Battle
Command -
Platform

JBC-P

JBC-P is the Army’s next-generation friendly force tracking system, equipping Soldiers
with a faster satellite network, secure data encryption and advanced logistics. JBC-P is the
Army’s next generation friendly force tracking system, equipping Soldiers with a faster
satellite network, secure data encryption and advanced logistics. JBC-P includes an
intuitive interface with features like touch-to-zoom maps and drag-and-drop icons. JBC-P
will be interoperable with the Nett Warrior handheld device, delivering situational
awareness capabilities to dismounted Soldiers. JBC-P incorporates the common hardware
solution known as the Mounted Family of Computer Systems (MFoCS), standardized
tactical computers that are scalable and tailorable to the mission and vehicle. Ranging in
options from a detachable tablet to a fully-loaded, vehicle-mounted workstation, MFoCS
runs not only JBC-P but can also run other software applications, reducing size, weight
and power demands. JBC-P builds on the situational awareness capability known as Force
XXI Battle Command Brigade and Below/Blue Force Tracking (FBCB2/BFT), which is
integrated on more than 120,000 platforms and is fielded or authorized to every brigade
combat team in the Army. "

4

Joint Command,
Control,
Communications,
Computers,
Intelligence,
Surveillance

JC4ISR Joint command, control, communications, computers, intelligence, surveillance and
reconnaissance 2

Joint Capabilities
Release JCR

JCR is a software upgrade. JCR includes computers, global positioning equipment and
communication systems that work in tandem to provide near-real-time information to
combat leaders at the tactical level so units are better able to synchronize operations and
avoid friendly fire incidents. Soldiers inside vehicles can plot the location of enemy, friendly
and neutral objects and exchange command and control messages. They can also alert
nearby friendly units of improvised explosive devices or enemy locations.

4

Joint Enterprise
Network
Manager

JENM

"The Joint Enterprise Network Manager (JENM) is a consolidated software application that
plans, loads, manages and secures/defends mid and lower-tier software defined radios and
associated waveforms, including: the Soldier Radio Waveform (SRW), Wideband
Networking Waveform (WNW), the Mobile User Objective System (MUOS), as well as the
Single Channel Ground and Airborne Radio System (SINCGARS) and some Satellite
Communications. JENM can plan and configure an entire network of disparate networking
radios and waveforms, ensuring interoperability across and between echelons. Its new
enterprise Over-the-Air Management (eOTAM) capability reduces manpower hours to
reconfigure, manage, control a tactical radio network, by performing the tasks rapidly
over-the-air. The JENM eOTAM capability reduces the need for Signal Soldiers to travel
from location to location, allowing them to manage and configure their radio networks
from remote locations, such as the battalion tactical operations cell. Additional
improvements to JENM include a more intuitive graphical user interface, simplification in
planning tactical networks, network monitoring and troubleshooting, and capability with
more software defined radios and respective waveforms."

4

Joint Gateway
Node JGN The JGN allows WIN-T to connect to a variety of external networks. 2

Joint Tactical
Network
operations
Toolkit

JTNT

Joint Tactical Networking Environment Network Operations Toolkit provides a means to
load and configure the Army's family of software-defined radios. Before J-TNT, there were
nearly 50 tools for signal Soldiers to plan, manage, monitor and control the Lower Tactical
Network Environment (LTNE).

4

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Joint Tactical
Radio System JTRS

Joint Tactical Radio System (JTRS) is the Department of Defense family of common
software-defined programmable radios that will form the foundation of radio frequency
information transmission for Joint Vision 2020. JTRS radios are intended to interoperate
with existing radio systems and provide the warfighter with additional communications
capability to access maps and other visual data, communicate via voice and video and
obtain information directly from battlefield sensors. JTRS will provide internet protocol
(IP)-based capability to the warfighter and will replace all existing tactical radios based on
the Services' migration plans. The JTRS program is built around an open Software
Communications Architecture (SCA), allowing common software waveform applications to
be implemented across the family of radios to provide joint-service, allied, and coalition
interoperability. JTRS is a key enabler that will provide dynamic connectivity throughout
the battle space to operate within the network centric operational environment. Activities
also include studies and analysis to support both current program planning and execution
and future program planning

4

Kilobits per
second Kbps Kilobit per second is currently defined as 1,000 bits per second. 2

Key Encryption
Key KEK

"DEK: Data Encryption Key KEK: Key Encryption Key Master Key: Generally will describe
one of the two above keys. Depending on the scheme in which it is implemented. This
type of encryption scheme is often used for secure storage. Microsoft Windows is known
to use this type of encryption scheme to protect user credentials and other types of data
that are secured for a user. Microsoft generates a Key Encryption Key using the user's
password. This KEK is then used to encrypt what they call the Master Key. The Master Key
is really a Data Encryption Key. It will be used to encrypt any data that is put in the user's
protected storage. Key management for Full Disk Encryption will also work the same way.
The FDE software will randomly generate a DEK, then use the user's
password/keyfile/smart card to create a KEK in order to encrypt the DEK. This mechanism
allows the user to change their password without having to decrypt and re-encrypt the
entire volume. Instead, the DEK is just re-encrypted with the new KEK."

4

Kilohertz (1000
Hz) kHz

The hertz (symbol: Hz) is the derived unit of frequency in the International System of Units
(SI) and is defined as one cycle per second. It is named for Heinrich Rudolf Hertz, the first
person to provide conclusive proof of the existence of electromagnetic waves. Hertz are
commonly expressed in multiples: 1 KHz = 1*10^3 Hz

4

Key Material
Identifier
(TACLANE)

KMID

Communications Security (COMSEC) term for an identifying marker embedded within a
electric key wrapper. Most commonly used with a firefly vector set (FFVS). This lets us
identify the exact 'serial number' of an encryption set installed on a device. No two devices
can use material with the same KMID.

4

Contracting
Officer KO

A Contracting Officer (CO or KO) is a person who can bind the Federal Government of the
United States to a contract that is greater than the Micro-Purchase threshold. This is
limited to the scope of authority delegated to the Contracting Officer by the head of the
agency.

2

Key Performance
Indicator KPI

(ITIL Continual Service Improvement) (ITIL Service Design) A metric that is used to help
manage an IT service, process, plan, project or other activity. Key performance indicators
are used to measure the achievement of critical success factors. Many metrics may be
measured, but only the most important of these are defined as key performance
indicators and used to actively manage and report on the process, IT service or activity.
They should be selected to ensure that efficiency, effectiveness and cost effectiveness are
all managed.

2

Key Tag Binary
(Key Tag File) KTB Similar to a KMID but for simple key material (not FFVS). 4

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Keyboard Video
Mouse KVM

A KVM switch (with KVM being an abbreviation for "keyboard, video and mouse") is a
hardware device that allows a user to control multiple computers from one or more sets
of keyboards, video monitors, and mice. Although multiple computers are connected to
the KVM, typically a smaller number of computers can be controlled at any given time.
Modern devices have also added the ability to share other peripherals like USB devices
and audio.

4

Local Area
Network LAN

A local area network (LAN) is a group of computers and associated devices that share a
common communications line or wireless link to a server. Typically, a LAN encompasses
computers and peripherals connected to a server within a distinct geographic area such as
an office or a commercial establishment.

2

Line of Service LOS
(ITIL Service Strategy) A core service or service package that has multiple service options.
A line of service is managed by a service owner and each service option is designed to
support a particular market segment.

2

Line of Sight LOS
"The line between the target and the aiming reference. 2. The straight line between two
points. This line is in the plane of the great circle, but does not follow the curvature of the
earth."

2

Low Probability
of Detection LPD The result of measures used to hide or disguise intentional electromagnetic transmissions. 2

Low Probability
of Interception LPI Result of measures to prevent the intercept of intentional electromagnetic transmissions 2

Lower Tactical
Internet LTI Lower Tactical Internet is radio based internet with it's related hardware, software and

tools 4

Media Access
Control (Ethernet
Address)

MAC

A media access control address of a device is a unique identifier assigned to a network
interface controller for communications at the data link layer of a network segment. MAC
addresses are used as a network address for most IEEE 802 network technologies,
including Ethernet and Wi-Fi. In this context, MAC addresses are used in the medium
access control protocol sublayer

4

Mobile Access
Router (HNR) MAR Embedded Cisco router in the Harris Baseband Processing Unit (BPU) 4

Megabits per
second Mbps

Megabits per second (Mbps) are a unit of measurement for bandwidth and throughput
on a network. Each megabit is equal to 1 million bits. Mbps belongs to a family of metrics
used to measure the capacity and speed of data transfer.

2

Megabytes per
second MBps

Megabytes per second (MBps) is a measure used to describe data transfer rates between
devices. One megabyte is technically equal to 1,048,576 bytes, but in networking it refers
to 1 million bytes. MBps should not be confused with the abbrevation Mbps, which refers
to megabits per second.

2

Mission
Command MC Command post and platform that enable mission execution by commanders and leaders

at all levels to be more effective, agile and decisive 4

Modular
Communications
Node - Basic

MCN-B Modular Communications Node – Basic (MCN-B). The MCN-B allowed the unit to extend
subscriber services from an adjacent TCN. 2

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Multi-Domain
Atlas MDA

"The Multi-Domain Atlas (MDA) is a rugged, dismountable vehicle computing platform
consisting of an intelligent docking station computer and a dismountable tablet computer.
MDA Features: Supports up to four classification domains simultaneously; runs virtual
machines to host independent security enclaves. Dock capable of running multiple
instances of Windows® and Linux® operating systems simultaneously. Tablet capable of
running a single instance of the Windows® or Linux® operating system. Built-in KVM
capability provides single display user interface to tablet and dock computers. A system
with detachable handheld display (tablet) with up to 50’ range; wired or Type-1 encrypted
wireless connection to the dock. "

4

Microsoft
Deployment
Toolkit

MDT

The purpose of MDT is to help automate the deployment of Windows operating systems
and applications to desktop, portable, and server computers in the environment. At a high
level, MDT automates the deployment process by configuring the unattended Setup files
for Windows and packaging the necessary files into a consolidated image file that you
then deploy to reference and target computers.

2

Maneuver
Enhancement
Brigade

MEB

A maneuver enhancement brigade (MEB) is a self-contained, modular, and multifunctional
support brigade of the United States Army customized to meet whatever mission it
receives. A MEB's primary purpose is to plug into operational formations commanded by
corps or division commanders, to support brigade combat teams once deployed, and to
conduct tactical level tasks and support.

2

Megahertz (1000
kHz) MHz

The hertz (symbol: Hz) is the derived unit of frequency in the International System of Units
(SI) and is defined as one cycle per second. It is named for Heinrich Rudolf Hertz, the first
person to provide conclusive proof of the existence of electromagnetic waves. Hertz are
commonly expressed in multiples: MHz = 1*10^6 Hz

4

Military
Intelligence MI

Military intelligence. Military intelligence is a military discipline that uses information
collection and analysis approaches to provide guidance and direction to commanders in
support of their decisions.

2

Military Standard MIL-STD
A United States defense standard, often called a military standard, "MIL-STD", "MIL-SPEC",
or (informally) "MilSpecs", is used to help achieve standardization objectives by the U.S.
Department of Defense.

2

Mean Time
Between Failures MTBF

(ITIL Service Design) A metric for measuring and reporting reliability. MTBF is the average
time that an IT service or other configuration item can perform its agreed function without
interruption. This is measured from when the configuration item starts working, until it
next fails.

2

Mean Time
Between Service
Incidents

MTBSI
(ITIL Service Design) A metric used for measuring and reporting reliability. It is the mean
time from when a system or IT service fails, until it next fails. MTBSI is equal to MTBF plus
MTRS.

2

Microsoft Test
Manager MTM

Microsoft Test Manager (MTM) is used to help test the application that has been built.
MTM stores test plans and results on Team Foundation Server (TFS). Part of Visual Studio
Enterprise and Visual Studio Test Professional.

2

Mean Time to
Restore Service MTRS

The average time taken to restore an IT service or other configuration item after a failure.
MTRS is measured from when the configuration item fails until it is fully restored and
delivering its normal functionality. See also maintainability; mean time to repair.

2

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Mean Time to
Repair MTTR

The average time taken to repair an IT service or other configuration item after a failure.
MTTR is measured from when the configuration item fails until it is repaired. MTTR does
not include the time required to recover or restore. It is sometimes incorrectly used
instead of mean time to restore service.

2

Metric N/A Something that is measured and reported to help manage a process, IT service or activity. 2

Non-Secure
Internet Protocol
Router

NIPR See NIPRNET 2

Non-classified
but Sensitive
Internet Protocol
Router Network

NIPRNET

The Non-classified Internet Protocol (IP) Router Network (NIPRNet) is a private IP network
used to exchange unclassified information, including information subject to controls on
distribution, among the private network's users. The NIPRNet also provides its users
access to the Internet.

2

Not Mission
Capable NMC Condition indicating that systems and equipment are not capable of performing any of

their assigned missions. 4

NettWarrior NW

The Nett Warrior is an integrated dismounted situational awareness (SA) and mission
command (MC) system for use during combat operations. Designed as a tool for leaders,
NW provides unparalleled SA and MC capabilities to the dismounted leader, permitting
faster and more accurate decisions during the tactical fight. With advanced navigation and
information sharing capabilities, leaders are able to avoid fratricide and are more effective
and more lethal in the execution of their combat missions. The NW program delivers a SA
and MC system, which has the ability to graphically display the location of an individual
leader’s location on a digital geo-referenced map image. Additional Soldier, platform and
unit locations are also displayed on the digital user interface. NW is connected through a
radio that will send and receive information from one NW to another, thus connecting the
dismounted leader to the network. These radios will also connect the equipped leader to
higher echelon data and information products to assist in decision making and situational
understanding. Soldier position location information will be added to the network via
interoperability with the Army’s Rifleman Radio capability. All of this will allow the leader to
easily see, understand, and interact in the method that best suits the user and the
particular mission. NW will employ a system-of-systems approach, optimizing and
integrating capabilities while reducing the Soldier’s combat load and logistical footprint.

4

Outside
Continental
United States

OCONUS Outside the continental limits of the United States 2

Operational
Expense OpEx

The cost resulting from running the IT services, which often involves repeating payments –
for example, staff costs, hardware maintenance and electricity (also known as current
expenditure or revenue expenditure). See also capital expenditure.

2

Open Shortest
Path First OSPF

Open Shortest Path First (OSPF) is a routing protocol for Internet Protocol (IP) networks.
It uses a link state routing (LSR) algorithm and falls into the group of interior gateway
protocols (IGPs), operating within a single autonomous system (AS).

4

On the Move OTM Military elements in physical motion 2

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Platform as a
Service PaaS

Platform as a Service (PaaS) or application platform as a Service (aPaaS) or platform base
service is a category of cloud computing services that provides a platform allowing
customers to develop, run, and manage applications without the complexity of building
and maintaining the infrastructure typically associated with developing and launching an
app.

2

Personal
Communications
Device

PCD Personally owned device such as a laptop, cell phone, or tablet 2

Plan, Do, Check,
Act PDCA

(ITIL Continual Service Improvement) A four-stage cycle for process management,
attributed to Edward Deming. Plan-Do-Check-Act is also called the Deming Cycle. Plan –
design or revise processes that support the IT services; Do – implement the plan and
manage the processes; Check – measure the processes and IT services, compare with
objectives and produce reports; Act – plan and implement changes to improve the
processes.

2

Platform
Encryption
Device (KGV-72)

PED

The KGV-72 Type-1 Programmable Encryption Device features a modular architecture
with the programmability and scalability to accommodate a wide range of link and
Internet Protocol (IP) in-line network encryption applications. Developed as part of the
Force XXI Battle Command, Brigade-and-Below (FBCB2) Type-1 Encryption Device (T1ED)
Program, the KGV-72 is a high-grade security solution that is compatible with existing
and future Blue Force Tracking (BFT) terminals and transceivers. Its flexible, software-
upgradeable design supports both legacy FBCB2 L-band/BLOS link communications and
evolving IP standards. The KGV-72 is secured with the programmable National Security
Agency (NSA)-certified Sierra II™ encryption module, which meets all requirements of the
NSA’s Cryptographic Modernization initiative. Programming of Suite-A and Suite-B
algorithms is also supported, allowing the KGV-72 to be used for a wide range of in-line
network applications. The KGV-72 operates seamlessly with installed FBCB2 remote
computers and provides high-grade traffic data encryption.

4

Program
Executive Office PEO

A program executive office may be responsible for a specific program (e.g., the Joint Strike
Fighter), or for an entire portfolio of similar programs (e.g., the Air Force PEO for space,
who is responsible for all acquisition programs at the Air Force Space Command Space
and Missile Systems Center, or the Navy PEO for aircraft carriers).

2

Performance
Enhancing Proxy
(WIN-T)

PEP

Performance-enhancing proxies (PEPs) are network agents designed to improve the end-
to-end performance of some communications protocol. PEP standards are defined in RFC
3135 (PEPs intended to mitigate link-related degradations) and RFC 3449 (TCP
performance implications of network path asymmetry).

4

Position Location
Information PLI Data in a Joint Variable Message Format (JVMF) which provides the ability to determine

an accurate location on the Earth. 4

Project
Management
Office

PMO
A project management office, abbreviated to PMO, is a group or department within a
business, agency or enterprise that defines and maintains standards for project
management within the organization.

2

Point of Presence PoP

The Point of Presence (PoP) is installed on select combat platforms at division, brigade and
battalion echelons (to include select vehicles), enabling mobile mission command by
providing on-the-move network connectivity, both line-of-sight and beyond-line-of-sight.
A point of presence (PoP) is an artificial demarcation point or interface point between
communicating entities. An Internet point of presence typically houses servers, routers,
network switches, multiplexers, and other network interface equipment.

2

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Program of
Record PoR

The term is used to describe a program that is funded (approved) across the FYDP,
(Future Year Defense Program) through the POM (Program Objective Memorandum).
When this happens, the program becomes a "line item record" in the budget -- hence the
term "program of record"

2

Personal Radio
Communications PRC

The AN/PRC-155 Manpack radio is the first fielded two-channel, software defined radio
capable of network-centric connectivity and legacy interoperability, supporting advanced
(SRW, MUOS) and current-force waveforms (including SINGARS and SATCOM). In
addition, the AIM II embedded programmable security allows the dismounted warfighter
to seamlessly join any combat net with confidence. Added functionality, like internal voice
and data bridging between networks, makes this the most powerful piece of tactical
equipment in the soldier’s communications arsenal – joining local networks to beyond line
of sight networks.

4

Quality
Assurance QA

(ITIL Service Transition) The process responsible for ensuring that the quality of a service,
process or other service asset will provide its intended value. Quality assurance is also
used to refer to a function or team that performs quality assurance. This process is not
described in detail within the core ITIL publications. See also service validation and testing.

2

QOS Edge
Device QED

In general, edge devices are normally routers that provide authenticated access (most
commonly PPPoA and PPPoE) to faster, more efficient backbone and core networks. The
trend is to make the edge device smart and the core device(s) "dumb and fast", so edge
routers often include Quality of Service (QoS) and multi-service functions to manage
different types of traffic. Consequently, core networks are often designed with switches
that use routing protocols such as Open Shortest Path First (OSPF) or Multiprotocol Label
Switching (MPLS) for reliability and scalability, allowing edge routers to have redundant
links to the core network. Links between core networks are different, for example Border
Gateway Protocol (BGP) routers often used for peering exchanges.

4

Quality
Management
System

QMS
(ITIL Continual Service Improvement) The framework of policy, processes, functions,
standards, guidelines and tools that ensures an organization is of a suitable quality to
reliably meet business objectives or service levels. See also ISO 9000.

2

Quality Of
Service QOS

"Quality of service (QoS) is the description or measurement of the overall performance of
a service, such as a telephony or computer network or a cloud computing service,
particularly the performance seen by the users of the network. To quantitatively measure
quality of service, several related aspects of the network service are often considered, such
as packet loss, bit rate, throughput, transmission delay, availability, jitter, etc. In the field of
computer networking and other packet-switched telecommunication networks, quality of
service refers to traffic prioritization and resource reservation control mechanisms rather
than the achieved service quality. Quality of service is the ability to provide different
priority to different applications, users, or data flows, or to guarantee a certain level of
performance to a data flow. Quality of service is particularly important for the transport of
traffic with special requirements. In particular, developers have introduced Voice over IP
technology to allow computer networks to become as useful as telephone networks for
audio conversations, as well as supporting new applications with even stricter network
performance requirements.

4

Responsible,
Accountable,
Consulted,
Informed

RACI (ITIL Service Design) A model used to help define roles and responsibilities. RACI stands
for responsible, accountable, consulted and informed. 2

Root Cause
Analysis RCA

(ITIL Service Operation) An activity that identifies the root cause of an incident or problem.
Root cause analysis typically concentrates on IT infrastructure failures. See also service
failure analysis.

2

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Radio Frequency RF

Radio frequency (RF) refers to alternating (AC) electric current or radio waves, oscillating in
the frequency range used in radio, extending from around twenty thousand times per
second (20 kHz) to around three hundred billion times per second (300 GHz), roughly
between the upper limit of audio frequencies and the lower limit of infrared frequencies.

4

Sustainment
System Mission
Command

S2MC

On 6/20/2014, Sustainment System Mission Command (S2MC), the organization that
developed Battle Command Sustainment Support System (BCS3) and associated logistics
command and control products, was retired. All current and future development efforts
will be web-based, placing the software and hardware systems into sustainment.

4

Situational
Awareness SA

On the ground during combat, situational awareness is the ability to see what’s in the
vicinity and anticipate what’s not — knowledge that can mean the difference between
surviving or being killed in action. Situational awareness is also the integrated web of
networks, servers, storage devices, and analysis and management software that ingests
data, makes it available for analysis, and then shares it anytime and anywhere, up and
down the chain of command.

4

Software as a
Service SaaS

SaaS provides a complete software solution that you purchase on a pay-as-you-go basis
from a cloud service provider. You rent the use of an app for your organization, and your
users connect to it over the Internet, usually with a web browser. All of the underlying
infrastructure, middleware, app software, and app data are located in the service provider’s
data center. The service provider manages the hardware and software, and with the
appropriate service agreement, will ensure the availability and the security of the app and
your data as well. SaaS allows your organization to get quickly up and running with an
app at minimal upfront cost

2

Service
Acceptance
Criteria

SAC
(ITIL Service Transition) A set of criteria used to ensure that an IT service meets its
functionality and quality requirements and that the IT service provider is ready to operate
the new IT service when it has been deployed. See also acceptance.

2

Service Access
and
Configuration
Management

SACM

(ITIL Service Transition) The process responsible for ensuring that the assets required to
deliver services are properly controlled, and that accurate and reliable information about
those assets is available when and where it is needed. This information includes details of
how the assets have been configured and the relationships between assets. See also
configuration management system.

2

Scaled Agile
Framework SAFe

"SAFe synchronizes alignment, collaboration, and delivery for multiple Agile teams.
Scalable and configurable, SAFe allows each organization to adapt it to its own business
needs. It supports smaller-scale solutions employing 50 – 125 practitioners, as well as
complex systems that require thousands of people. Copyright © Scaled Agile, Inc. "

3

Satellite
Communications SATCOM

Product Manager Satellite Communications (PdM SATCOM) rapidly designs, acquires,
fields and supports fully integrated, easy to operate and cost effective tactical SATCOM
and services that meet Joint network communications requirements around the world. As
part of the Army’s holistic One Tactical Network, most of these terminals transmit voice,
video and data over the Warfighter Information Network-Tactical (WIN-T) backbone. With
terminals ranging in size from a softside carry-on to a small house, the Army’s global
network of SATCOM capability provides interoperable high-speed, high-capacity
connectivity, so Soldiers can communicate across vast distances and in austere locations
and terrains, virtually anytime, anywhere.

2

Signal Battalion SB Provides Command, Control, Communications and Computer (C4) support to it's parent
Signal Brigade. 2

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Software
Communications
Architecture

SCA

The Software Communications Architecture (SCA) is an open architecture framework that
defines a standard way for radios to instantiate, configure, and manage waveform
applications running on their platform. The SCA separates waveform software from the
underlying hardware platform, facilitating waveform software portability and re-use to
avoid costs of redeveloping waveforms.

2

Service Design
Package SDP

(ITIL Service Design) Document(s) defining all aspects of an IT service and its requirements
through each stage of its lifecycle. A service design package is produced for each new IT
service, major change or IT service retirement.

2

Smart Display
Unit SDU A ruggedized video display unit mounted in a military vehicle. Programmable buttons

along the bezel facilitate different functionality between running applications. 4

Secure Internet
Protocol Router SIPR See SIPRNET 2

Secure Internet
Protocol
Network

SIPRNET

The Secret Internet Protocol Router Network (SIPRNet) is "a system of interconnected
computer networks used by the U.S. Department of Defense and the U.S. Department of
State to transmit classified information (up to and including information classified SECRET)
by packet switching over the 'completely secure' environment".

2

Simple Key
Loader
(AN/PYQ-10)

SKL
The AN/PYQ-10 Simple Key Loader (SKL) is a ruggedized, portable, hand-held fill device,
for securely receiving, storing, and transferring data between compatible cryptographic
and communications equipment.

4

Service Level
Agreement SLA

(ITIL Continual Service Improvement) (ITIL Service Design) An agreement between an IT
service provider and a customer. A service level agreement describes the IT service,
documents service level targets, and specifies the responsibilities of the IT service provider
and the customer. A single agreement may cover multiple IT services or multiple
customers. See also operational level agreement.

2

Service Level
Management SLM

(ITIL Service Design) The process responsible for negotiating achievable service level
agreements and ensuring that these are met. It is responsible for ensuring that all IT
service management processes, operational level agreements and underpinning contracts
are appropriate for the agreed service level targets. Service level management monitors
and reports on service levels, holds regular service reviews with customers, and identifies
required improvements.

2

Service Level
Requirement SLR

(ITIL Continual Service Improvement) (ITIL Service Design) A customer requirement for an
aspect of an IT service. Service level requirements are based on business objectives and
used to negotiate agreed service level targets.

2

Service Level
Target SLT

(ITIL Continual Service Improvement) (ITIL Service Design) A commitment that is
documented in a service level agreement. Service level targets are based on service level
requirements, and are needed to ensure that the IT service is able to meet business
objectives. They should be SMART, and are usually based on key performance indicators.

2

Specific,
Measurable,
Achievable,
Relevant and
Time-bound

SMART
(ITIL Continual Service Improvement) (ITIL Service Design) An acronym for helping to
remember that targets in service level agreements and project plans should be specific,
measurable, achievable, relevant and time-bound.

2

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Service
Management
Office

SMO
The Service Management Office (SMO) is a relatively new concept which is directly
analogous to the Project Management Office (PMO). Like the PMO, the SMO provides a
centre of excellence within the organization to drive efficiency and effectiveness.

2

Soldier Network
Extension SNE

The Soldier Network Extension (SNE), delivers the Army’s mobile tactical network backbone
to the company level, and is evolving from a vehicle used by the company commander to
an information hotspot allowing other Soldiers to plug in, make phone calls and send and
receive data from anywhere on the battlefield. The Soldier Network Extension (SNE) is
installed on select vehicles to provide on-the-move network communications to extend
the network. Using its on-the-move satellite communication systems, the SNE can also be
used to heal and extend remote tactical radio networks.

2

Special
Operations
Command

SOCOM

The United States Special Operations Command (USSOCOM or SOCOM) is the Unified
Combatant Command charged with overseeing the various Special Operations
Component Commands of the Army, Marine Corps, Navy, and Air Force of the United
States Armed Forces. The command is part of the Department of Defense and is the only
Unified Combatant Command legislated into being by the U.S. Congress. USSOCOM is
headquartered at MacDill Air Force Base in Tampa, Florida.

2

Signal Operating
Instructions SOI

Signal operating instructions or Communications-Electronics Operation Instructions are
U.S. military terms for a type of combat order issued for the technical control and
coordination of communications within a command. They include current and up-to-date
information covering radio call signs and frequencies, a telephone directory, code-words,
and visual and sound signals. A designated battalion signal officer prepares the battalion
SOI in conformance with the SOI of higher headquarters. Units maintained 2 copies of the
SOI: a training version and a "go-to-war" version. During operations, SOI are changed
daily. Since the fielding of the SINCGARS system, however, the paper SOI has generally
faded from Army use. Electronic SOI are now generated, distributed and loaded along with
cryptographic keys.

4

Standard
Operating
Procedure

SOP
A standard operating procedure is a set of instructions covering those features of
operations which lend themselves to a definite or standardized procedure without loss of
effectiveness

2

Soldier Radio
Waveform SRW

The SRW provides networked wideband communications that enable simultaneous,
integrated combat net radio voice, data and video capabilities. Designed as a mobile ad
hoc waveform, the SRW functions as a "node" or "router" within a radio network and
transmits vital information across large distances and over elevated terrain, such as
mountains. The SRW is used by individual Soldiers, small units and very small sensors such
as unattended ground or air vehicles, and it enables communication without a "fixed"
infrastructure such a cell tower or satellite network.

4

Satellite
Transportable
Terminal

STT
The Satellite Transportable Terminal (STT) is a highly transportable and mobile satellite
system, which operates in conjunction with the JNN and BnCPN, designed to establish
secure voice, video and data communications virtually anytime and anywhere.

2

Sustainment
Brigades Sust Bdes

The sustainment brigade is designed to provide mission command for combat support
and combat service support units. It can be adjusted in size to support anywhere from
one to ten brigade combat teams (BCTs). A sustainment brigade has a joint capability that
allows the Army to better manage the flow of logistics into the area of operations (AO)
and provides support to other services for common logistics like fuel, common ammo,
medical supplies, repair parts of wheeled vehicles, and so forth. A sustainment brigade is
designed to operate independently in a theater of operations, in conjunction with other
sustainment brigades under the command of a sustainment command (expeditionary), or
directly under a theater sustainment command. When in theater, a sustainment command
(expeditionary) will report to the theater sustainment command.

2

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

TACLANE
Configuration
Tool

TCT Manufacturer provided software application which automated the configuration of
TACLANE devices. 4

Time Division
Multiple Access TDMA

Time-division multiple access (TDMA) is a channel access method for shared-medium
networks. It allows several users to share the same frequency channel by dividing the
signal into different time slots. The users transmit in rapid succession, one after the other,
each using its own time slot. This allows multiple stations to share the same transmission
medium (e.g. radio frequency channel) while using only a part of its channel capacity.
TDMA is used in the digital 2G cellular systems such as Global System for Mobile
Communications (GSM), IS-136, Personal Digital Cellular (PDC) and iDEN, and in the
Digital Enhanced Cordless Telecommunications (DECT) standard for portable phones. It is
also used extensively in satellite systems, combat-net radio systems, and passive optical
network (PON) networks for upstream traffic from premises to the operator.

4

Transmission
Encryption Key TEK

Traffic encryption key (TEK)/data encryption key (DEK) - a symmetric key that is used to
encrypt messages. TEKs are typically changed frequently, in some systems daily and in
others for every message. See session key. DEK is used to specify any data form type (in
communication payloads or anywhere else).

4

Team
Foundation
Server

TFS

Team Foundation Server (commonly abbreviated to TFS) is a Microsoft product which
provides source code management (either via Team Foundation Version Control or Git),
reporting, requirements management, project management (for both agile software
development and waterfall teams), automated builds, lab management, testing and
release management capabilities.

2

Trivial File
Transfer Protocol TFTP

Trivial File Transfer Protocol (TFTP) is a simple lockstep File Transfer Protocol which allows a
client to get a file from or put a file onto a remote host. One of its primary uses is in the
early stages of nodes booting from a local area network. TFTP has been used for this
application because it is very simple to implement.

4

Time Of Day TOD

A time-of-day (ToD) port on the front panel of the router allows you to connect external
timing signal sources. The external timing input port is labeled TOD. (From RFC 868: This
protocol provides a site-independent, machine readable date and time. The Time service
sends back to the originating source the time in seconds since midnight on January first
1900.)

4

Transmission Key
Encryption Key TRKEK COMSEC key used to encrypt over-the-air-rekey (OTAR) messages. 4

Tactical Relay
Tower (HNR) TRT WIN-T Inc 2 (PoR MN) coonfiguration item designed for range extension of HNW radio

networks. 4

Transmission
Security Key TSK Seed for a pseudorandom number generator that is used to control a radio in frequency

hopping or direct-sequence spread spectrum modes 4

Ultra High
Frequency UHF

Ultra high frequency (UHF) is the ITU designation for radio frequencies in the range
between 300 megahertz (MHz) and 3 gigahertz (GHz), also known as the decimetre band
as the wavelengths range from one meter to one decimeter. Radio waves with frequencies
above the UHF band fall into the SHF (super-high frequency) or microwave frequency
range.

4

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

User Interface UI

The user interface (UI), in the industrial design field of human–computer interaction, is the
space where interactions between humans and machines occur. The goal of this
interaction is to allow effective operation and control of the machine from the human end,
whilst the machine simultaneously feeds back information that aids the operators'
decision-making process. Examples of this broad concept of user interfaces include the
interactive aspects of computer operating systems, hand tools, heavy machinery operator
controls, and process controls. The design considerations applicable when creating user
interfaces are related to or involve such disciplines as ergonomics and psychology.

2

Unit Reference
Number URN

Specific numerical identifier for devices, unit, and persons on the battlefield. This URN is
generated and used within Mission Command applications to distinguish certain
resources.

4

Upper Tactical
Internet UTI WIN-T 4

Vehicular
Amplifier
Adapter

VAA It provides additional power amplification for clear communication over greater ranges. 4

Very High
Frequency VHF

Very high frequency is the ITU designation for the range of radio frequency
electromagnetic waves from 30 to 300 megahertz, with corresponding wavelengths of ten
to one meter.

4

Voice over IP VoIP

Voice over Internet Protocol (also voice over IP, VoIP or IP telephony) is a methodology
and group of technologies for the delivery of voice communications and multimedia
sessions over Internet Protocol (IP) networks, such as the Internet. The terms Internet
telephony, broadband telephony, and broadband phone service specifically refer to the
provisioning of communications services (voice, fax, SMS, voice-messaging) over the public
Internet, rather than via the public switched telephone network (PSTN).

2

Vehicular Radio
Communications VRC Army/Navy designation for terrestial RF communications equipment. 4

Vehicle Wireless
Package VWP

The Vehicle Wireless Package (VWP) is a communications package for non-WIN-T
Command and Control (C2) vehicles. The VWP B-Kit provides remote connectivity to a
TCN via a Local Access Waveform for command and control vehicles during at-the-halt
and on-the-move operations. It is a small form factor Local Area Network extension of the
TCN’s satellite and terrestrial line-of-sight network systems.

2

Vehicle Wireless
Platform VWP Discontinued WIN-T configuration item. 4

Wide Area
Network WAN

A wide area network (WAN) is a telecommunications network or computer network that
extends over a large geographical distance. Wide area networks are often established with
leased telecommunication circuits.

2

Warfighter
Information
Network-Tactical

WIN-T

WIN-T is the Army’s tactical communications network backbone that enables mission
command and secure reliable voice, video and data communications anytime, anywhere.
Leveraging both satellite and line-of-sight capabilities for optimum efficiency, effectiveness
and operational flexibility, the WIN-T network provides the data "pipe" that other
communication and mission command systems need to connect into in order to operate.
With WIN-T, Commanders and Soldiers can leverage mission command applications at
any location, from traditional command posts, to network-equipped vehicles crossing the
battlefield, even from the belly of C17 aircraft en route to an objective.

2

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

Work in Process WIP A status that means activities have started but are not yet complete. It is commonly used
as a status for incidents, problems, changes etc. 2

Warfighter
Initialization Tool WIT

"Now, the Army is bringing increased flexibility to the way troops initialize their mission
command systems by putting the power in the hands of the communications officer, or
S6, to make real-time changes, on the fly. Once data products are delivered to the unit,
the S6 can make the alterations to reflect exactly what systems are on the ground, instead
of sending revisions back and ordering new data products. The S6 will now be able to
integrate new equipment, modify or add roles, and have those changes take effect almost
immediately compared to the old way of doing business. This capability has already been
delivered to select units across the Army fielded with Capability Sets 13-15. The Army will
take that effort one step further this summer with the planned fielding of the next
generation of initialization tools, which will enable Soldiers at individual workstations to
initialize their own system, much like turning on a commercial computer for the first time.
"

4

TER M

ACR ONYM
IF

E X IS TENT D EFINIT ION VER S ION

What's new in 4.0.0
Last updated on March 1, 2021.

Last Reviewed and Approved on PENDING REVIEW

Rapid Provisioning System Release Notes
Last updated on August 11, 2021.

Last Reviewed and Approved on PENDING REVIEW

Unreleased Changes

[Unreleased]
Added

Added PostgreSQL as RPS CMDB. This replaces Microsoft SQL Server.
Added Task Management Service (TMS). This replaces SMA.
Added WindowsMsp as an accepted type to patch object manifest.
Added the ability to find Target Items, Resource Items, Resource Groups, Target Groups by filter (property) where it contains
a given string instead of only exact matches
Added filtering capabilities to the Maintenance Window and History views under Package Streams.
New capability in Sync for node to register itself with its parent once online. i.e., NOSC registering itself with Master Node.
Added DSC Pull Server Plugin.

Added new certificate that is used for DSC Pull Server Client Authentication.

New and Updated RPS Web UI Features

Package Stream History tab updated to display Superseded Package Assignment telemetry
Package Stream Approvals tab updated to remove Package deployment status
Package Stream History tab has been redesigned to organize data by: Package Stream -> Node -> Target -> Package
Package Stream History tab updated to include the ability to filter by Node, Package Stream, or Package
Packages page added (RPS Menu > Distribution > Packages)
Package Streams menu item renamed:

Previous: RPS Menu > Distribution > Packaging
Current: RPS Menu > Distribution > Package Streams

Add new UI to create new Package Streams
Add new UI to upload RPS Packages to existing Package Streams
Added new telemetry to track when a Package fails to deploy to a Target and the Target is running an incompatible
Patch System version

New telemetry for individual assignments:
IsAboveMaxPatchSystemVersion
IsBelowMinPatchSystemVersion

Updated roll-up telemetry logic to account for the above new telemetry. They will be counted as errors when
calculating the roll-up status.

Item UI Page will now display all Target Items with and without Parent Ids.
Added Certificate Management page used for rolling RPS managed certificates.

New PowerShell Cmdlets

Add-RpsPatch: Accepts a collection of Patches with the -Patch parameter to make the child items of a Patch Stream
that has not yet been approved.
Approve-RpsPatchStream: new cmdlet for Approving a Patch Stream.
Deny-RpsPatchStream: new cmdlet for Rejecting a Patch Stream.
Disable-RpsMonitorUser: Disables monitoring on a user.
Disable-RpsPatch: Disables Patch as well as patches that depend on this patch.

Enable-RpsMonitorUser: Enables monitoring on a user.
Enable-RpsPatch: Enables Patch as well as dependent patches.
Export-RpsSecurityData: Used to export RPS RBAC Users and Role Assignments.
Get-RpsAuditEntry: Gets all audit entries or ones by specified criteria.
Get-RpsInstalledSeedDataVersion: Gets the current installed seed data version from the CMDB.
Get-RpsRole: Gets RPS RBAC Role object.
Get-RpsRoleAssignment: Gets the role assignment for a user, role, or both.
Get-RpsSeedDataVersion: Gets the version of the seed data in the Rps.SeedData.dll.
Get-RpsUser: Gets an RPS RBAC user.
Import-RpsSecurityData: Used to import RPS RBAC Users and Role Assignments.
Import-RpsSeedData: Imports all seed data in the Rps.SeedData.dll into the CMDB.
Protect-RpsMasterKey: Encrypts the master key with the certificate described by the given thumbprint.
Remove-RpsRoleAssignment: Removes the role assignment for a specified user.
Remove-RpsUser: Removes an RPS RBAC user.
Test-RpsPatchManifest: Validation of a Patch Manifest now allows for miscellaneous/extra elements to be added to a
manifest and not checked against the XSD.

New Web Application Plugins

Certificate Manager: Rps.CertificateManager.RpsPlugin is a REST endpoint used to invoke the certificate request
process. For additional details, see RPS Certificate Management Technical Design.
Certificate Request: Rps.CertificateRequest.RpsPlugin is a REST endpoint used to communicate with a specified
Certificate Authority. Specific use case includes sending certificate signing requests to the Certificate Authority and
retrieve certificates that have been issued from requests made by RPS. For additional details, see RPS Certificate
Management Technical Design.

D eprecated

Deprecated the following obsolete PowerShell cmdlets (will be removed in a future version):

CMD LE T D EPR ECATED R EPL ACED B Y

Get-RpsPatchManifest Get-RpsPatchManifest

Get-RpsPatchStream Get-RpsPatchStream

Get-RpsPatch Get-RpsPatch

New-RpsPatchStream New-RpsPatchStream

New-RpsPatch New-RpsPatch

Remove-RpsPackageStream Remove-RpsPatchStream

Remove-RpsPatch Remove-RpsPatch

Removed

References to Sync Service Account.
Removed Microsoft SQL Server as RPS CMDB. It is replaced by PostgreSQL.
Removed Master-Controller runbook.
Removed SMA. It is replaced by Task Management Service (TMS).
Removed the "SetDefaultProperties" method functionality from the ResourceGroup object.
Removed the "SetDefaultProperties" method functionality from the ResourceItem object.
Removed the following obsolete PowerShell cmdlets:

CMD LE T R EMOVED R EPL ACED B Y

ConvertTo-RpsResourceGroupXml Export-RpsData

ConvertTo-RpsResourceItemXml Export-RpsData

ConvertTo-RpsTargetGroupXml Export-RpsData

ConvertTo-RpsTargetItemXml Export-RpsData

ConvertTo-RpsTaskAssignmentXml Export-RpsData

ConvertTo-RpsTaskItemXml Export-RpsData

ConvertTo-RpsTaskMapXml Export-RpsData

Find-RpsLogItem Get-RpsLogItem

Find-RpsNode Get-RpsNode

Find-RpsResourceAssignment Get-RpsResourceAssignment

Find-RpsResourceGroup Get-RpsResourceGroup

Find-RpsResourceItem Get-RpsResourceItem

Find-RpsTargetGroup Get-RpsTargetGroup

Find-RpsTargetItem Get-RpsTargetItem

Find-RpsTaskAssignment Get-RpsTaskAssignment

Find-RpsTaskAssignmentUserAction Get-RpsTaskAssignmentUserAction

Find-RpsTaskItem Get-RpsTaskItem

Find-RpsTaskMap Get-RpsTaskMap

Find-RpsTaskMapDefDependency Get-RpsTaskMapDefDependency

Find-RpsTaskMapDefFilter Get-RpsTaskMapDefFilter

Find-RpsTaskMapDefinition Get-RpsTaskMapDefinition

Find-RpsTaskMapStep Get-RpsTaskMapStep

Find-RpsTaskMapStepDependency Get-RpsTaskMapStepDependency

Find-RpsTaskMapStepFilter Get-RpsTaskMapStepFilter

Import-RpsResourceGroup Import-RpsData

Import-RpsResourceItem Import-RpsData

Import-RpsTargetGroup Import-RpsData

Import-RpsTargetItem Import-RpsData

Import-RpsTaskAssignments Import-RpsData

Import-RpsTaskItem Import-RpsData

Import-RpsTaskMap Import-RpsData

Invoke-RpsEvaluateTaskAssignmentStatus Invoke-RpsEvaluateTaskAssignment

Invoke-RpsResetTaskAssignmentStatus Invoke-RpsResetTaskAssignment

New-RpsTaskMapDefDependency New-RpsTaskMapStepDependency

New-RpsTaskMapDefFilter New-RpsTaskMapStepFilter

New-RpsTaskMapDefinition New-RpsTaskMapStep

New-RpsTaskMapStructure New-RpsTaskMap

Remove-RpsResourceAssignmentStatus Remove-RpsResourceAssignment

Remove-RpsTaskAssignmentStatus Remove-RpsTaskAssignment

Remove-RpsTaskMapDefDependency Remove-RpsTaskMapStepDependency

Remove-RpsTaskMapDefFilter Remove-RpsTaskMapStepFilter

Remove-RpsTaskMapDefinition Remove-RpsTaskMapStep

Update-RpsNode Set-RpsNode

Update-RpsPackageStream Add-RpsPatch, Approve-RpsPatchStream, Reject-RpsPackageStream

Update-RpsResourceAssignmentStatus Update-RpsResourceAssignment

Update-RpsTaskAssignmentStatus Update-RpsTaskAssignment

Update-RpsTaskMapDefFilter Update-RpsTaskMapStepFilter

Update-RpsTaskMapDefinition Update-RpsTaskMapStep

CMD LE T R EMOVED R EPL ACED B Y

Changed

Access to the database is now limited to a SQLAccount with Role DatabaseAccount and the database connection string
will now use this SQL account instead of integrated authentication. (Windows Authentication)
Allowed filtering resolved parameters based on the IsActive property.

TaskAssignment property SmaJobGuid is changed to PhyrJobId , corresponding to the system change from SMA to TMS.
IsSMA property of Node Target Items is now IsTaskManagement , corresponding to the system change from SMA to TMS.
Manually importing and publishing runbooks is no longer needed. Executing runbooks is now automated when copied into
the Runbook folder. The folder can be located by using Get-RpsStorageValue -Key "DefaultRunbookFolder" and can be
changed by using
Set-RpsStorageValue -Key "DefaultRunbookFolder" -Value "[Full path of the folder you wish to use]"

Updated Master Key encryption to support both RSA and ECC certificates.

Updated PowerShell Cmdlets

Export-RpsData: Added the ability to export data as JSON using -Format json parameter.
New-RpsPatch: The PackageStream parameter is now optional so a Package can be created without a Package Stream.
New-RpsTargetGroup: Add Properties parameter allowing properties to be added with one command.
New-RpsTaskAssignment: NodeIdToRunOn Parameter added.
Remove-RpsPatch: The PackageStream parameter is now optional to remove the Package from the given Package
Stream.
Set-RpsConnectionString: Added properties for DatabaseType (defaults to Postgres), Port number, Connection
Timeout, and Command Timeout. Added examples.
Test-RpsPatchManifest: The cmdlet will return true if a manifest is valid or return false and write out a list of validation
exceptions if the manifest is invalid.

Fixed

Fixed Get-Help documentation for Rps-Api PowerShell module.
Fixed "Cannot assign Target Items to an Item Group from the Web UI" Known Issue.
#115891 Fixed where the same package assigned to multiple appliances on the same node would cause the DSC resource
to fail when processing packages.

Known I ssues

Patch Manifest Conditions element Value field does not support multiple values separated by the pipe delimiter |

Error Details: The following PackageManifest code snippet is an example using pipe delimiter | in Conditions , which
will fail:

<InstallerFileName>opera.msi</InstallerFileName>
<Conditions>
 <PackageAssignmentCondition>
 <Property>Name</Property>
 <Operator>Eq</Operator>
 <Value>ad.unit.domain|nosc.local.rps</Value>
 </PackageAssignmentCondition>
</Conditions>

The resulting behavior: Only the first value listed in the Value field will receive an assignment; all other values after
the pipe delimiter | are ignored.

In this particular example, ad.unit.domain is assigned the opera patch, because it was listed before the pipe delimiter | .

nosc.local.rps is not assigned the opera patch, because it was listed after the pipe delimiter | .

Current Workaround for pipe delimiter | : Utilize the Match Operator <Operator>Match</Operator> , with each
value in the Value field wrapped in parentheses () and with a trailing question mark ? . Example:

<Conditions>
 <PackageAssignmentCondition>
 <Property>ComputerName</Property>
 <Operator>Match</Operator>
 <Value>(NFA)?(WNM)?(WNMA)?</Value>
 </PackageAssignmentCondition>
</Conditions>

In the above example, a target with a Property of ComputerName will be assigned if its Value contains NFA, WNM,
and/or WNMA. This implementation only requires a partial value match.

For an exact value match, the full string in the Value field must be enclosed with a caret ^ and a dollar sign $.
Example:

<Conditions>
 <PackageAssignmentCondition>
 <Property>ComputerName</Property>
 <Operator>Match</Operator>
 <Value>^(NFA)?(WNM)?(WNMA)?$</Value>
 </PackageAssignmentCondition>
</Conditions>

In the above example, a target with a Property of ComputerName will be assigned if its Value contains NFA, WNM,
and WNMA.

Sync service and Patching

The switch to PostgreSQL breaks the Sync service and Patching (which is dependent on Sync) until the Sync service
can be refactored to work with PostgreSQL.
The refactoring is scheduled for Alpha 3.
Current Workaround: None. The sync feature to resolve this issue is scheduled for Alpha 3.

Certificate Management

From the RPS Certificate Manager plugin, there is an issue with decrypting Resource Item protected properties in
order to encrypt private key with password. This will cause the automated certificate request process to be
unsuccessful. This issue will be addressed in Alpha 4.

RBAC: Possible permissions bleed-over between users

This bug has a small chance of occurring when multiple users are interacting with RPS, either through PowerShell or
the Web GUI, which could result in a high volume of concurrent requests.
This bug was discovered through testing, by spamming the RPS API with multiple concurrent requests from different
users. It is unlikely to occur in a real-world environment.
This bug is only applicable to authenticated users. Because RBAC only handles authorization, it is not possible for this
bug to occur for non-authenticated users.

Released on February 28, 2020

What's new in 3.1.0 (Feb 28)

New PowerShell CMDLETS

New-RpsGroupCondition: Creates a Condition object to add to a Resource Group or Target Group to dynamically add
Members.
Get-RpsGroupFilter: Gets the filter object on a Resource Group or Target Group
Remove-RpsGroupCondition: Removes a condition from a Resource Group or Target Group
Get-RpsResolvedParameter: Resolves a Parameter against a Target Item.
New-RpsPatchStream: Creates new Package Stream and Packages
New-RpsPatch: Creates a new Package object and adds it to a Package Stream
Update-RpsPackageStream: Updates an existing Package Stream
Remove-RpsPatch: Removes an existing Package from a Package Stream and optionally removes all assignments
Remove-RpsPatchStream: Removes an existing Package Stream, Packages, and optionally removes all assignments
Get-RpsPatch: Gets an existing Package
Get-RpsPatchStream: Gets an existing Package Stream
Get-RpsMaintenanceWindow: Gets an existing Maintenance Window
New-RpsMaintenanceWindow: Creates a new Maintenance Window
Remove-RpsMaintenanceWindow: Removes an existing Maintenance Window
Set-RpsMaintenanceWindow: Sets a Maintenance Window if it exists or creates a new Maintenance Window if it
doesn't exist
Enable-RpsCdn: Turns On/Off Bits and/Or Dfsr communication.

Updated PowerShell CMDLETS

New-RpsResourceGroup: Add parameters Operator and Condition
New-RpsTargetGroup: Add parameters Operator and Condition

Updated DSC Utilities for resolving PowerShell Parameters to take a TargetItem and the ParameterMetedata object. You
now do not need to have a resource assignment to a DSC partial or the parameter imported into the CMDB. You would use
this in an extenral PowerShell script to resolve properties from the CMDB.

Updated PowerShell Functions

Resolve-RpsNode: (Breaking change) The function now requires user to be in an active session context or connected
to a SQL database. It no longer uses hard-coded strings to resolve the names of nodes.
Resolve-RpsNode: Can optionally return the Node object versus just the string name
Resolve-RpsNode: Added ability to filter out default node

Updated RPS Installer

Added ability to deploy a preconfigured RHEL virtual machine with the RHELTemplateFilename switch parameter
Group ContentCreators that has permission to the CDN folder for adding content (e.g. Packages)

Sync Changes

Item Properties have a SyncScope to define how the property should be synchronized
Public - synchronize
Private - do not synchronize
Internal - synchronize only to internal nodes
InternalDownstream - synchronize only to internal children
InternalUpstream - synchronize only to internal parents

CDN Changes

New properties on Node to define the protocol: ParentCdnProtocol and ChildCdnProtocol. The valid values are 'Bits'
or 'Dfsr' (case and whitespace sensitive) which tell nodes the protocol to use for each Content Delivery Network.
Set-RpsResourceType: Add parameters:

CDNDirection (Upstream or Downstream) - This can be used by content (e.g. Packages) to specify the direction it
should be synchronized
IsContentDistribution - This indicates whether a resource refers to content that will be synchronized

New Resource Item call CdnSettings that gets globally created with two Internal properties, IsBitsEnabled and
IsDfsrEnabled. The two properties only sync within internal nodes. i.e. within a unit.

New RPS Type Definitions

Package: Defines a Package and its properties
Package Stream: Defines a Package Stream and its properties

New DSC Resources

RPS Package Manager: DSC Resource for RPS Package Streams and Packages. Provides tools to Get, Set, and Test
Packages for a Target

New PowerShell Modules

RPS Package Provider: Provides methods to Find, Install, or Uninstall packages; Get list of installed packages; Add or
Remove Packages Sources

New RPS Web UI Features

Packaging section added (RPS Menu > Distribution > Packaging)
Approvals tab: Approve or Reject Package Streams
Scheduling tab: Create, Edit, and Delete Maintenance Windows
History tab: View the deployment status of Package Streams, Packages, and Assignments

Added new function Test-DscModuleConflict to use for testing for required DSC Module conflicts across all assigned partials
for a single Target Item.

Added Get-AdminRoleCredential to Rps-Api-Utilities; used to determine which credential role to use in a task

Known issues in 3.1 .0

Web UI

Closing the Remove Resource modal resets filters
From the Resources screen, if you have a filter added for Packages and you confirm and remove a package it will
clear your filters
Workaround: Manually re-apply your filters

Cannot assign Target Items to an Item Group from the Web UI
From the RPS Web UI menu: Targeting > Item Groups
Open the patchable target group by clicking on the name
Open the Members accordion
When you try to click "+ Add New Item" you'll receive an error
Workaround: PowerShell can be used to add Target Items to an Item Group:

$ti = Get-RpsTargetItem -Id IdOfMyTargetItem
$tg = Get-RpsTargetGroup -Id IdOfMyGroup
$tg.AddChildItem($ti)
$tg.Update()

glyphicons halflings are not signed and do not display in Web UI when deployed due to STIG
Some icons (e.g. status icons for Packages) do not display in Internet Explorer when deployed due to STIG
Workaround: The status can be easily discerned by font color and wording of the statuses.

API
Dates are parsed out of Properties as strings and we always lose timezone specifications

This could cause some times to be slightly incorrect depending on how they were stored and/or retrieved
Workaround: No known workaround.

Currently there is no support for Maintenance Windows that span across 2 or more days
Workaround: Create 2 maintenance windows - one for each day so it covers the entire period of time desired.

PowerShell cmdlets
DateTime for Start/End date in Get-RpsMaintenanceWindow displays inaccurate time

Get-RpsMaintenanceWindow returns the Start/End date which includes a time, however, the time is inaccurate
and it conflicts with the start/end times that are also returned to the user
Workaround: No known workaround. This is a visual/display issue. The time portion included alongside the
Start/End dates that are shown are not what is being used. The actual times being used are displayed separately.

Released on September 20, 2019

What's new in 3.0.3 (Sep 20)
The primary update in this Hotfix release is to address:

#23726 Fix: Provisioning Node App Server fails to configure DSC. Login failed for user.

Released on September 19, 2019

What's new in 3.0.2 (Sep 19)
The following are work items completed in support of the 3Q19 Release and delivered in Hotfix 3.0.2. These fixes include Critical
and High Risk Factor mitigations.

#23542 Fix: Address .NET 2.0 Vulnerabilities
#23543 Fix: Address .NET 3.0 Vulnerabilities
#23556 Fix: Address CVE-2017-8529 mitigation for Internet Explorer vulnerability
#23555 Fix: Address 'Memory Management\FeatureSettingsOverride' mitigations
#23547 Fix: Address Visual C++ 2008 SP1 Vulnerability
#23548 Fix: Address GPO setting "Hardened UNC Paths" (KB3000483)
#23544 Fix: Address .NET 3.5 Vulnerabilities
#23545 Fix: Address SQL Server 2012 SP4 Vulnerability (KB4057116)
#23550 Fix: Address SSL Version 2 and 3 Protocol Detection

IMPORTANT

The ContentStore has been updated to include various "binary" patches, such as for SQL Server, and Microsoft .NET. Additionally, the 3Q19
.vhdx / .iso have been updated to include additional Windows patches. Please ensure the latest ContentStore and the 3Q19-2012R2-0919 from
the Release are used.

What's new in 3.0.1 (Sep 05)
#23286 Fix: Task Management Service will throw errors after running for a long time

What's new in 3.0.0 (Aug 23)
#19833 Timestamp Logic for BITS



#23135 Certificates issued by RPSRoot do not have FQDN in the SAN
#22992 Test DCA deployment without a PFX certificate
#23147 Resource Group membership cannot be updated by subsequent node imports
#23230 RpsDomainJoin account doesnt get the correct permissions to add a computer to the domain that is prestaged
#23229 RpsProvisioning dns record is set to Interanl nic instead of 996 and 59 NIC
#23227 Web Config files are being overwritten by RPSGUI, RPSProvisioning, and TrustedElementRepository DSC Partials
#23093 xDFSR uses Domain Admin account
#23049 RVP configured with specific registry settings for compliance
#21370 Master-Controller fails to resume after service or machine restart
#23210 SQL SA account name conflict
#23026 Content Delivery Network Partial is missing a mandatory parameter

What's new in 3.0.0-beta (Aug 16)
#22496 Update PSScriptAnalyzer to 1.18.1
#22311 When installing the content store to a directory other than c:/contentstore certificates are installed in the wrong
path
#22432 Remove RVPS GUI files and install and powerstig from the release
#23035 RpsDomainJoin accounts are set to Create = False within RpsAccounts.csv file
#22647 Configure a new Packaging Repository and migrate our code out of Core.
#22684 Updates needed to the Ports and Protocols section of the RPS Install Guide.pdf
#21495 RPS currently does not have a way to continually re-publish DSC partials
#22537 Update OSS registrations and Third Party Notices file
#22913 Files located under the folder c:\ContentStore\Export are not encrypted (on the APP VM)
#22948 Failing resource on RVP - [xPackage]ACCM
#19973 Deploy PowerSTIG 3.3.0
#22541 Add a script resource RpsDomainController.ps1 to execute certutil.exe - installdefaulttemplates
#22243 Automate Axway Desktop Validator Enterprise
#22483 Need to update SkipRules for DSC PowerStig configuration
#22433 Access Database partial is assigned in colorless baseline data for RVP
#22683 RPS Install does not work per published installation directions
#22694 Export-NodeData Runbook variable $TargetItem is not correctly referenced
#21970 Unable to export taskmap definitions with Export-RpsData
#22015 Update RPS logging during deployment to better characterize issues
#21971 Lot 7 NOSC NIPR RVP ActivClientAppInstall patch fails (RPS 2.4.5)
#22607 Failing resource - [xPackage]ActivClient71
#21560 DSC Partials should only require OSCore when necessary
#22549 Update DCA Assignments.psd1
#22557 Update source Certificate locations and update the Certificates.psd1 and CertificationAuthority partial.
#20605 TrustElementRootPath gets set to wrong path
#21458 APP and AD VMs do not have PowerStig configurations
#22246 Any website on the c:\ drive is a CAT II finding
#22248 RPSAdmin domain account password should be user configurable for APP and AD
#22417 Newly generated self-signed certificates sometimes not loaded into the CMDB
#22426 Import-NodeData fails on APP VM when importing node data
#22429 Duplicate Import-RPSNode Functions
#22436 OCSP website has request filters that need to be removed
#22449 RVP - CdnPath points to C$ instead of share
#22458 Registry resource failing to add registry keys for TER authorization
#22593 Update to only install McAfee agent 5.5
#22594 RVP - CdnPath points to C$ instead of share
#22598 Registry resource failing to add registry keys for TER authorization

#22670 DomainJoinAdmin gets access denied when joining RVP to the domain
#22677 Remove Install-MNRps.ps1 as it is no longer used.
#22682 RpsProvisioning folder path creation should not use the FQDN for folder name
#22691 Generated certificates are missing FQDN for subject name
#22743 RpsGUI not reaching desired state due to a certificate error
#22936 Existing WinRm settings on a target cause the set-winrm runbook to fail.
#23001 Missing SSL binding reg key in trust element reposistory partial
#23015 Provisioning node configuration has missing master key encryption role on several accounts
#23034 Copy-BaseImages references the wrong local account for credentials.
#22454 Failing resource on RVP - [AdcsOnlineResponder]OnlineResponder
#22464 OSCore New Computername Timing
#22666 Deploy the RPS 3.x codebase in Hyper-V
#22725 Install-Rps.ps1 does not update MN node target items' VhdTemplateFileName property
#22542 Replace $DomainAdmin with $CAServiceAccount in the CertificationAuthority.ps1 partial.
#22555 Inhibit and restart Tumbleweed service to the DesktopValidatorStandardAppInstall.ps1
#22587 Add the Certificate partial dependency to the CertificationAuthority partial.
#22945 Create a partial for the Exit Module
#23073 Update the CA Partial to use RPSadmin
#23074 DomainJoin resource fails on DCA
#23075 RVP needs to be a member of TPKI Writes AD Group

What's New in 3.0.0-beta (Aug 9)
#22432 Remove RVPS GUI files and install and powerstig from the release
#22311 When installing the content store to a directory other than c:/contentstore certificates are installed in the wrong
path
#22684 Updates needed to the Ports and Protocols section of the RPS Install Guide.pdf
#22483 Need to update SkipRules for DSC PowerStig configuration
#22433 Access Database partial is assigned in colorless baseline data for RVP
#22694 Export-NodeData Runbook variable $TargetItem is not correctly referenced
#22549 Update DCA Assignments.psd1
#21458 APP and AD VMs do not have PowerStig configurations
#22670 DomainJoinAdmin gets access denied when joining RVP to the domain
#22429 Duplicate Import-RPSNode Functions
#22691 Generated certificates are missing FQDN for subject name
#22426 Import-NodeData fails on APP VM when importing node data
#22458 Registry resource failing to add registry keys for TER authorization
#22598 Registry resource failing to add registry keys for TER authorization
#22677 Remove Install-MNRps.ps1 as it is no longer used.
#22682 RpsProvisioning folder path creation should not use the FQDN for folder name
#22449 RVP - CdnPath points to C$ instead of share
#22594 RVP - CdnPath points to C$ instead of share
#20605 TrustElementRootPath gets set to wrong path
#22593 Update to only install McAfee agent 5.5
#22725 Install-Rps.ps1 does not update MN node target items' VhdTemplateFileName property
#22496 Update PSScriptAnalyzer to 1.18.1
#22647 Configure a new Packaging Repository and migrate our code out of Core.
#22537 Update OSS registrations and Third Party Notices file
#22541 Add a script resource RpsDomainController.ps1 to execute certutil.exe - installdefaulttemplates
#22243 Automate Axway Desktop Validator Enterprise
#22015 Update RPS logging during deployment to better characterize issues
#21560 DSC Partials should only require OSCore when necessary

#22555 Add inhibit and restart Tumbleweed service to the DesktopValidatorStandardAppInstall.ps1
#22587 Add the Certificate partial dependency to the CertificationAuthority partial.
#20407 Configure BITS/DFSR per node type

Files excluded from the drop!
In order to improve the speed with which RPS artifacts can be integrated with other code repositories, the decision was made to
exclude files from Core which required modification later in the integration process for Mission Network. These files and folders
are below:

DSC\Modules\NetworkingDSC\6.1.0.0\DSCResources\MSFT_HostsFile\MSFT_HostsFile.psm1
DSC\Modules\MN_OfficeDSC\
DSC\Modules\MN_SchemaExtensionDSC\
DSC\Modules\MN_xWinEventLog\
DSC\Modules\WINT_NetworkPolicyServer\
Modules\MN-AnalyzerRules\
Modules\MN-Automation\
Modules\MN-ISO\
Modules\MN-Rps-Api\
Modules\MN-Ssh\
Modules\MN-VMWare-Utilities\
DSC\PartialConfigurations\ActivClientAppInstall.ps1
DSC\PartialConfigurations\AdobeReaderAppInstall.ps1
DSC\PartialConfigurations\AdSchemaExtension.ps1
DSC\PartialConfigurations\ClientPki.ps1
DSC\PartialConfigurations\DesktopValidatorStandardAppInstall.ps1
DSC\PartialConfigurations\DoDInstallRootAppInstall.ps1
DSC\PartialConfigurations\FirefoxAppInstall.ps1
DSC\PartialConfigurations\Firewall.ps1
DSC\PartialConfigurations\GpoWmiFilter.ps1
DSC\PartialConfigurations\GroupPolicy.ps1
DSC\PartialConfigurations\McAfeeHBSSAppInstall.ps1
DSC\PartialConfigurations\MsftAppLocker.ps1
DSC\PartialConfigurations\MsftDnsServer.ps1
DSC\PartialConfigurations\NetBannerAppInstall.ps1
DSC\PartialConfigurations\OcspResponder.ps1
DSC\PartialConfigurations\Office2013AppInstall.ps1
DSC\PartialConfigurations\OpenSSLAppInstall.ps1
DSC\PartialConfigurations\OracleJDKAppInstall.ps1
DSC\PartialConfigurations\OracleJREAppInstall.ps1
DSC\PartialConfigurations\PuTTYAppInstall.ps1
DSC\PartialConfigurations\RvpsGUI.ps1
DSC\PartialConfigurations\SmartCardManager90MeterAppInstall.ps1
DSC\PartialConfigurations\SoftphoneAppInstall.ps1
DSC\PartialConfigurations\SolarWindsETAppInstall.ps1
DSC\PartialConfigurations\TeraTermAppInstall.ps1
DSC\PartialConfigurations\TigerVNCAppInstall.ps1
DSC\PartialConfigurations\TrustElementRepository.ps1
DSC\PartialConfigurations\VMWareClientIntegrationPlugInAppInstall.ps1
DSC\PartialConfigurations\VMWareRemoteConsoleAppInstall.ps1
DSC\PartialConfigurations\VMWareToolsAppInstall.ps1
DSC\PartialConfigurations\VMWarevSphereClientAppInstall.ps1

DSC\PartialConfigurations\VMWarevSpherevCLIAppInstall.ps1
DSC\PartialConfigurations\WaveDesktopCommunicatorAppInstall.ps1
Images\ESX\Grangeville.cfg
iPXE Distro\
Provisioning\Provisioning Vlan Address Space.csv
Runbooks\Copy-BaseImages.ps1
Runbooks\Get-TargetDhcpIPAddress.ps1
Runbooks\Import-VMWareVirtualAppliance.ps1
Runbooks\New-VMWareVirtualMachine.ps1
Runbooks\Remove-VMWareVirtualMachine.ps1
Setup\
Utilities\

What's New in 3.0
PowerShell

This release contains the following PowerShell enhancements:

Added Import-RpsInstanceDefinition and Export-RpsInstanceDefinition to Import/Export InstanceDefinitions as Json.
Added Import-RpsDataMapping and Export-RpsDataMapping to Import/Export Data Mappings as Json.
Added Import-RpsResourceItemJson and Export-RpsResourceItemJson to Import/Export Resource Items as Json.
Added Set-RpsDataImportMapping to the API from Rps-DataMapping module.
Added Set-RpsDataFilter to the API from Rps-DataMapping module.
Added Set-RpsDataCondition to the API from Rps-DataMapping module.
Added Set-RpsDataProperty to the API from Rps-DataMapping module.
Added Set-RpsDataAssociation to the API from Rps-DataMapping module.
Added Set-RpsMappingFilter to the API from Rps-DataMapping module.
Added Set-RpsDataVariable to the API from Rps-DataMapping module.
Added Set-RpsDataMapping to the API from Rps-DataMapping module.
Added Set-RpsDataFile to the API from Rps-DataMapping module.

Rps-I nstaller

This release contains the following Rps-Installer enhancements:

D S C

This release contains the following DSC enhancements:

MofStore location is now located within C:\ContentPath\DSC.
OutputPath parameter is no longer set on the node, or set statically.
Publish-DSCConfiguration now creates, and sets the OutputPath parameter for all assigned partials.
Removed Mandatory flag from OutputPath parameter on all partials.
Updated runbooks to pass OutputPath within calls to LCM functions.
Default value for LCM functions within the RPS-DSC module is now the present working directory for stand alone use.

R P S AP I

This release contains the following API enhancements:

Adding the following Type Property constants:

IsContentDistribution
IsSoftwareDistribution
IsColumnDisplay

Updated the Set-RpsResourceType cmdlet to indicate if the Resource Type is for software or content distribution. The
IsContentDistribution and IsSoftwareDistribution switches are mutually exclusive in the cmdlet, however, setting the
IsSoftwareDistribution switch will also set the IsContentDistribution flag on the Resource Type.

Updated the Set-RpsTypeProperty cmdlet to indicate if the Property Type can be used for Column Displays within the
Admin UI.

Updated the New-RpsResourceGroup cmdlet to allow for properties to be provided at creation

Updated the Write-RpsLogItem cmdlet to write to the appropriate PS stream. Tokenization in MessageTemplate is also more
forgiving.

Added Json support for InstanceDefintitions and Data Mappings to help make creation and updating easier.

Added Json support for Resource Items to have a readable and organized way of import/exporting resource items and
sharing between nodes.

When TaskMaps are included in an export, their TaskMapSteps are also exported by default

Added an optional Certificate parameter for passing a certificate file (.cer) that will encrypt the resulting configuration file in
the Exit-RpsSession and Export-RpsData cmdlets.

Added optional Certificate and password parameters for passing certificate file (.pfx) and password that will be used to
decrypt a configuration file in the Enter-RpsSession and Import-RpsData cmdlets.

Added support to encrypt/decrypt export files during the install process.

R P S Sync Service

This release contains the following Sync Service enhancements:

R P S C D N

This release contains the following RPS Content Delivery Network (CDN) enhancements:

DFS-R is used for communication between Region and Site nodes.
BITS is still used for communication between Master and Region nodes.
Due to DFS-R mesh networking, all files are replicated to all Region and Site nodes within a domain, regardless of
assignment.
Patches will still only be installed on assigned targets

Admin U I

This release contains the following Admin UI enhancements:

Replaced 'Patching' on the top menu bar with 'Distribution'
Added dynamically created sections under distribution for Content Distribution and Software Distribution

Resolved I ssues

Top issues addressed in 3.0:

Fixed issue where the SMA runbook service account was denied access to the MofStore after STIGs were applied
Fixed issue where there was a credential conflict with the Windowsfeature Net-Framework-Core resource, between the
RpsSMA, and RpsSQL partial.

Known I ssues

S Q L Server 2012

This release contains the following SQL enhancements:

Microsoft SQL Server 2012 has been upgraded from Service Pack 2 (SP2) to SP4

PowerShell

This release contains the following PowerShell enhancements:

Added support to allow certificate store parameter to be passed from CMDB.

Added support for additional certificate roles:

CAp7b
CertificationAuthorityPFX
CACertificateChain

Added Force switch for Set-RpsResourceItem, Set-RpsTargetItem, New-RpsResourceItem, New-RpsTargetItem, New-
RpsResourceGroup, and New-RpsTargetGroup

Removed module RPS-Credentials and functions:
Get-Credential
New-Credential
Get-ServiceAccount

Added data files for Users and Certificates. They can be found here 'Setup\Configuration\Data\RpsAccounts.csv'
and here 'Setup\Configuration\Data\RpsCertificates.csv'. For both data files, if no password is provided in the
password column, a password will be randomly generated per user/certificate.

Rps-Credential

New-RpsCredential was updated to allow generation of a password, with or without a provided password policy.

Rps-I nstaller

Import-RpsCredential was updated to allow generation of a password, with or without a provided password policy.
MofStore location was changed from C:\Windows\Temp to C:\ContentStore\DSC

D S C

This release contains the following DSC enhancements:

Added Certification Authority Partial to install and configure a Certification Authority node.

Domain Admins no longer joins machines to the domain.

The RpsDomainJoin account now joins staged computer objects, within the Computers OU, to the domain using the
minimum permissions required.

ContentDeliveryNetwork partial updated to install DFS-R for Region and Site nodes

Updated Dsc Modules to the following versions:

MOD U LE COR E VER S ION

AccessControlDsc 1.3.0.0

ComputerManagementDsc 6.2.0.0

PowerStig 3.1.0

xWebAdministration 2.5.0.0

ResourceControllerDSC 2.0.1

MOD U LE COR E VER S ION

R P S AP I

This release contains the following API enhancements:

Updated the Set-RpsTargetItem and Update-RpsTargetItem cmdlets to not allow the altering of an existing Parent if it has
already been set.

Adding the following ResourceType constants:

CATemplate
OcspUriPath
CdpUriPath
AiaUriPath
RegistryItem
Crl
NPSPolicyMap
NPSClient
RegistryAccessEntry
RegistryAccessControlList
RegistryAccessRule
CertificationAuthority

BREAKING CHANGE: TypeDefinitions are now enforced on Target Items. All required params will have to be set when
creating the target item.

Added Instance Definitions, which are pre-defined complex, default data for the purpose of quickly defining data but also
codifying configuration data
Added a User Profile context to the Rps API in order to provide and track the current user. This provides the foundation for a
RBAC implementation.
Added an optional method of export to provide the user with a plaintext XML file where protected properties are in the clear.
Added an optional CertificateThumbprint parameter to the Enter-RpsSession, Exit-RpsSession, Export-RpsData, and Import-
RpsData cmdlets in order to encrypt/decrypt file exports and imports.
Added Get-RpsPasswordPolicy cmdlet
Added Set-RpsPasswordPolicy cmdlet
Added New-RpsPassword cmdlet
Added Update-MasterKey cmdlet
Added Get-RpsProtectedProperty cmdlet.
Added Instance Definition Nodes, which are pre-defined objects that can be used to create Nodes that are associated with
Instance Definitions
Added Set-RpsTargetType cmdlet.
Added Set-RpsResourceType cmdlet.
Added Set-RpsSubType cmdlet.
Added Set-RpsChildType cmdlet.
Added Set-RpsTypeProperty cmdlet.
Added Set-RpsTypeRA cmdlet.
Added Set-RpsTargetAction cmdlet.
Added Set-RpsResourceGroupType cmdlet.
Added Get-RpsCredential cmdlet.
Added New-RpsCredential cmdlet.
Added Get-UnixHash cmdlet

Added Set-RpsTargetGroupType cmdlet.

Sample:

 $secureResult = Get-RpsProtectedProperty -TargetItem $targetItem -Name $name
 $secureResult = Get-RpsProtectedProperty -ResourceItem $resourceItem -Name $name
 $secureResult = Get-RpsProtectedProperty -Node $node -Name $name
 $secureResult = Get-RpsProtectedProperty -TaskMapAssignment $taskMapAssignment -Name $name
 $secureResult = Get-RpsProtectedProperty -ResourceGroup $resourceGroup -Name $name
 $secureResult = Get-RpsProtectedProperty -TargetGroup $targetGroup -Name $name

 # parameter setup
 $name = "propertiy name"

 # return variable to plain text
 $plainText = ConvertFrom-SecureString $secureString

Added Set-RpsProtectedProperty cmdlet.

Sample:

 Set-RpsProtectedProperty -TargetItem $targetItem -Name $name -Value $securePwd
 Set-RpsProtectedProperty -ResourceItem $resourceItem -Name $name -Value $securePwd
 Set-RpsProtectedProperty -Node $node -Name $name -Value $securePwd
 Set-RpsProtectedProperty -TaskMapAssignment $taskMapAssignment -Name $name -Value $securePwd
 Set-RpsProtectedProperty -ResourceGroup $resourceGroup -Name $name -Value $securePwd
 Set-RpsProtectedProperty -TargetGroup $targetGroup -Name $name -Value $securePwd

 # parameter setup
 $name = "propertiy name"
 $value = ConvertTo-SecureString "Value" -AsPlainText -Force

Enhanced Set-RpsTargetItem and Set-RpsResourceItem cmdlets to accept protected properties from a hashtable using the
SecureString type. Sample:

 Set-RpsTargetItem -Name $name -Type $type -Properties @{ Protected = $secureString }
 Set-RpsResourceItem -Name $name -Type $type -Properties @{ Protected = $secureString }
  ```

Breaking Change: Marked New-RPSTaskMapStructure cmdlet as Obsolete.

Modified the API to mask protected properties when they are returned to the console.

Added New-RpsInstanceDefinition Cmdlet. Sample:

    $hs = @{
    Prop1 = "value1"
    Prop2 = "value2"
    New-RpsInstanceDefinition -Name testName -Properties $hs

Added New-RpsInstanceDefinitionItem Cmdlet. Sample: An Instance Definition Item is a wrapper for an RPS type and
associated Properties.
PowerShell New-RpsInstanceDefinitionItem -EntityName testEntityName -Name name2 -Properties @{Prop1 =
"Value1"} -TypeDefinitionId $typedefinition.id

Added Invoke-RpsInstanceDefinition Cmdlet.
PowerShell Invoke-RpsInstanceDefItem -Settings $resourceItem -InstanceDef $instanceDefinition

Added Set-RpsInstanceDefinition Cmdlet. Sample:



    Set-RpsInstanceDefinition -Name $Name1
    Set-RpsInstanceDefinition -Name $Name1 -Properties @{Prop1 = "Value1"}

Added Remove-RpsInstanceDefinitionItem Cmdlet.

    Remove-RpsInstanceDefinitionItem -Id "8825A09C-CCE3-4BB0-BCE1-03B4729AC423"
    Remove-RpsInstanceDefinitionItem -InstanceDefinitionItem $InstanceDefinitionItem

Added Get-RpsInstanceDefinition Cmdlet. Sample:

    Get-RpsInstanceDefinition -Id "8825A09C-CCE3-4BB0-BCE1-03B4729AC423"
    Get-RpsInstanceDefinition -Name MyInstanceDef

Added Remove-RpsInstanceDefinition Cmdlet. Sample:

 Remove-RpsInstanceDefinition -Id "8825A09C-CCE3-4BB0-BCE1-03B4729AC423"
 Remove-RpsInstanceDefinition -InstanceDefinition $InstanceDefinition

Added Set-RpsInstanceDefinitionItem Cmdlet. Sample:

    Set-RpsInstanceDefinitionItem -Name $Name1 -TypeDefinitionId $id -EntityName $entityName
    Set-RpsInstanceDefinitionItem -Name $Name1 -TypeDefinitionId $id -Properties @{Prop1 = "Value1"} -
EntityName $entityName

Added Get-RpsInstanceDefinitionReference. Sample:

$instanceDef = Get-RpsInstanceDefinition -Name "MyDefinition"
$instanceDefItem = Get-RpsInstanceDefinitionItem -Name "MyItem"
$reference = Get-RpsInstanceDefinitionReference -Name "name" -InstanceDefinition $instanceDef -
InstanceDefinitionItem $instanceDefItem

Added New-RpsInstanceDefinitionReference. Sample:

$instanceDef = Get-RpsInstanceDefinition -Name "MyDefinition"
$instanceDefItem = Get-RpsInstanceDefinitionItem -Name "MyItem"
$taskMapIDs = "5b8b0340-091f-4823-b2f9-de937b5b4114", "a83b5445-3cc0-433e-b5e0-0fcf70389988"
$reference = New-RpsInstanceDefinitionReference -Name "name" -InstanceDefinition $instanceDef -
InstanceDefinitionItem $instanceDefItem -TaskMapIDs $taskMapIDs

Added Remove-RpsInstanceDefinitionReference. Sample:

$instanceDef = Get-RpsInstanceDefinition -Name "MyDefinition"
$instanceDefItem = Get-RpsInstanceDefinitionItem -Name "MyItem"
Remove-RpsInstanceDefinitionReference -Name "name" -InstanceDefinition $instanceDef -
InstanceDefinitionItem $instanceDefItem

Added Remove-RpsInstanceDefinitionAssociation. Sample:

$instanceDef = Get-RpsInstanceDefinition -Name "MyDefinition"
$instanceDefItem = Get-RpsInstanceDefinitionItem -Name "MyItem"
$instanceDefItem2 = Get-RpsInstanceDefinitionItem -Name "MyItem2"
Remove-RpsInstanceDefinitionAssociation-InstanceDefinition $instanceDef -PrimaryReference 
$instanceDefItem -Secondaryreference $instanceDefItem2

Added New-RpsInstanceDefinitionAssociation. Sample:



$instanceDef = Get-RpsInstanceDefinition -Name "MyDefinition"
$instanceDefItem = Get-RpsInstanceDefinitionItem -Name "MyItem"
$instanceDefItem2 = Get-RpsInstanceDefinitionItem -Name "MyItem2"
New-RpsInstanceDefinitionAssociation-InstanceDefinition $instanceDef -PrimaryReference 
$instanceDefItem -Secondaryreference $instanceDefItem2

Added Get-RpsInstanceDefinitionAssociation. Sample:

$instanceDef = Get-RpsInstanceDefinition -Name "MyDefinition"
$instanceDefItem = Get-RpsInstanceDefinitionItem -Name "MyItem"
$instanceDefItem2 = Get-RpsInstanceDefinitionItem -Name "MyItem2"
Get-RpsInstanceDefinitionAssociation-InstanceDefinition $instanceDef -PrimaryReference 
$instanceDefItem -Secondaryreference $instanceDefItem2

Added New-InstanceDefinitionNode. Sample:

New-RpsInstanceDefinitionNode -EntityName testEntityName -Name name2 -Hostname hostname -IPAddress 
1.1.1.1 -SyncEndpointUrl syncEndpoint -certificateThumbprint certThumbprint -pollingInterval 1

Added Set-InstanceDefinitionNode. Sample:
PowerShell Set-RpsInstanceDefinitionNode -Name name1 -EntityName testEntityName2 -Hostname hostname2 -
IPAddress 2.2.2.2 -SyncEndpointUrl syncEndpoint2 -certificateThumbprint certThumbprint2 -pollingInterval 2

Added Get-InstanceDefinitionNode. Sample:
PowerShell $instanceDefNode = Get-RpsInstanceDefinitionNode -Name name1

Added Remove-InstanceDefinitionNode. Sample:
PowerShell Remove-RpsInstanceDefinitionNode -Id "8825A09C-CCE3-4BB0-BCE1-03B4729AC423" Remove-
RpsInstanceDefinitionNode -InstanceDefDefinitionNode $InstanceDefinitionNode

Updated demo data scaffolding to support DCA image testing.

Added NOP79190 node to Nodes.psd1 to support DCA image testing.
Added NOP79190 target item to TargetItems folder to support DCA testing.
Updated Assignments.psd1, ResourceGroups.psd1, and Initialize-Image.ps1 to support DCA image testing.

Updated demo data scaffolding to support NDM image testing.

Updated TCN79192 demo data scaffolding to support NDM image testing.
Added TCN79192 node to Nodes.psd1 to support NDM testing.
Added TCN79192 target item to TargetItems folder to support NDM testing.
Updated Assignments.psd1, ResourceGroups.psd1, and Initialize-Image.ps1 for NDM image testing.

Modified Initialize-Baseline.ps1 to support dynamic testing of images.

Updated PartialConfigurations-cmdb.tests.ps1 to support dynamic testing of images. Now includes the DCA and NDM
image.

Admin U I

Added Generate Random Password functionality for Resource Item, Target Item, and Patch Password fields.

Added the ability for Generate Random Password to be based on a Password Policy.

Modified the UI to mask protected properties.

Added password/protected property reveal functionality to the UI.

Added the ability to supply a certificate thumbprint for encrypting/decrypting CMDB file export/import via the UI.

Updated the Task Map Step Number and Depends On columns, so it has a consistent sort order.



Resolved I ssues

Top issues addressed in 3.0:

Fixed issue in the the RPS Install that was causing DSC to fail on Node Registration and import.
Fixed issue with SID translation that would force manual intervention.
Fixed issue where user rights assignment settings within the core repo were conflicting when STIGs were applied.

Known I ssues

Issues Addressed in RPS release 2.4.6
#21479 LCM Configuration Mode is not controllable per target from the CMDB
#21445 Missing utilities folder in local content store
#21422 RpsProvisioning cannot configure virtual drive
#21557 Rps-encryption breaking SAN's
#21558 Rps-Network doesnt allow existing exclusion assignments
#21559 RpsDomainController only applies tombstone lifetime to primary dc
#20900 2Q19 User Principal Name suffix isn't being configured on DSC VM or AD.rps.local
#21469 Access Database partial is assigned in colorless baseline data for RVP
#21483 Remove RVPS GUI files and install and powerstig from the release
#21538 Prov Vlan updates from GDMS
#21539 TaskMap Updates from GDMS
#21566 Runbook retries implemented where network communications can be a factor
#21536 GPO Updates to UnifiedAD
#20788 Duplicate Import-RPSNode Functions
#21472 OCSP website has request filters that need to be removed
#20670 PowerSTIG Service rules fail if the expected service does not exist

Issues Addressed in RPS release 2.4.5
#21275 Cannot add patches to a target and republish
#21396 RVP computer account on Dev node deployment not added to correct OU
#21371 OsCore does not create a Disk resource for targets with multiple disks
#20952 2Q19 Update to only install McAfee agent 5.5
#21269 Publish-DSCPatch.ps1 pathing bug breaks Patching
#20951 2Q19 Update VMware-tools-10.3.10-12406962
#16291 RVP - CdnPath points to C$ instead of share
#20897 RVP missing ImagesParentPath property
#20867 New-ProvisioningNodeConfiguration.ps1 has incorrect property name images parent folder property
#20875 Unneeded array item causes a duplicate resource ID error during compilation
#20674 Failing resource on DSC - [xADForestProperties]
#20878 RpsSQL and RpsSMA resource controller has incorrect import version
#17860 On a running Prov Laptop APP VM, when a taskmap assignment and RunOnLocalNode has been issued, the first 3
workflows fail
#21354 Get-DSCStatus is not assigned to targets therefore patch status is not updated
#20897 RVP missing ImagesParentPath property
#20928 2Q19 Utilities and Certificates not present in localContent Store Path
#20931 Created Dev Enclave/Node to reduce the complexity of deployments across teams
#20932 Remove hardcoded data from installer. Modify Hyper-V VM creation scripts to ensure VM environments are
generated as specified
#20948 2Q19 Update Adobe Reader to 19.012.20034
#20950 2Q19 Update Java\jre-8u212-windows-x64.exe
#21395 OcspResponder partial is skipped on RVP due to missing property



#21383 RPSOSCore.ps1 network profile configuration can only set one interface to Private, otherwise there are resource
conflicts
#21006 2Q19 Certificate generation creates malformed SANs during import
#20928 2Q19 Utilities and Certificates not present in localContent Store Path

Issues Addressed in RPS release 2.4.4
#19832 Copy-ContentStore does not log an alert when a file copy fails
#19666 ResourceGroups.psd1 for the DSC missing items
#20757 Adobe Acrobat version needs updated in partial
#20559 Firewall Rules only allow traffic for specific applications
#20603 GPO SIDs are not being translated into domain accounts when imported
#20607 TrustElementRepository Reader/Writer sites have incorrect bindings
#20690 Failing resource on RVP - [xPackage]McAfee Agent
#19528 Test-DscMof does not detect resource conflicts between PowerStigConfiguration and other partials
#20605 TrustElementRootPath gets set to wrong path
#20611 Failing resource on RVP - [AdcsOnlineResponder]OnlineResponder
#20776 RVP data has assigned partials that should not be assigned
#19832 Copy-ContentStore does not log an alert when a file copy fails
#19661 Set contentfreshness for sysvol replication on all domain controllers to 365 days maxtimeofflineindays setting
#20604 Conflicting ComputerManagementDsc module versions
#20821 SMA Runbook account needs to have LogonAsAService permissions
#20607 TrustElementRepository Reader/Writer sites have incorrect bindings
#19528 Test-DscMof does not detect resource conflicts between PowerStigConfiguration and other partials
#20605 TrustElementRootPath gets set to wrong path
Update to PowerSTIG 3.2.0
STIG Rule Updates: 41023, 41024, 4102, 41026, 41407, 41021, 41022, 41027 41028, 41029, 41030, 41031, 41032, 41033,
41035, 41042 41305, 41306, 41307, 41037, V-41251, V-40950, V-69169 V-40952, V-40953, V-41016, V-41017

Issues Addressed in RPS release 2.4.3
Released on May 15, 2019

Removed dependency on xCAPIstore resources
Removed unneeded service restart in domain controller resource
Updated Install-MNRps so execution can occur without $VhdFolderPath and $VMTemplateFileName
Separated reader and writer SSL settings for the Trusted Element Reader website
Fixed duplicate resources being created between PowerStig and RPS partials
The $allComputers variable in Rps-Installer module was not properly populated and resulted in unexpected deployment
Fixed issues where DNS Zones were not loaded; the same fix addresses 'Domain Controller promotion fails due to unknown
root cause; possible SMB contention issue' and 'replica DC promo fails multiple connection issue'
Added an array for value data on IPv6 disable resource
Fixed Master-Controller failing to resume after service or machine restart
Addressed xWebAdministration version references mismatch
Added a reboot for ssl binding registry update to address Registry resource failing to add registry keys for TER
Fixed inbound Reader and Writer traffic being blocked to the RVP
Fixed the issue where PFX files were attempting to get uploaded to the TER site
Removal of ResourceControllerDSC module version 1.3.1 and added ResourceControllerDSC module version 2.0.0.
Updated version for import-module calls for ResourceControllerDSC
Added use of ResourceController for Allow Log on Locally, and Log on as a Service URAs within RpsSync partial.
Within the RpsSecIIS partial, added three resources that leverage ResourceControllerDSC to remove .NET v.4.5, and .NET
v.4.5 Classic accounts from Log on as a service, Generate security audits, and replace a process level token before they



become rogue/dead sids.
COTS Update - McAfee

Agent 5.5.1.462
ACCM 3.2.5
RSD 5.0.6.125
SIEM Collector new

COTS Update - ActivClient 7.1
COTS Update - Adobe Reader 19.10.20091.53467

Issues Addressed in Core release 2.4.2
Released on April 17, 2019

Added and updated tombstone parameter
Added forest name to domain object for laptop build
User and Group property updates
Add MC check to ensure only one MC is running
Add max reserved memory for SQL
Added RSAT for DNS
Add tombstone configuration

Issues Addressed in DSC_Images tagged 2.4.2
Changes made to partial to reflect the most current VMWare tools software
Integrate PowerStig 3.1
Bug fix to allow for duplicate name
Add a forest name property to the ADDomain object
Add valid task map action
Updating the NT Auth store can fail - this breaks CAC login
Updated NPS partial to use NPS group configuration from CMDB
Update tombstone value on domain controller
Added property for max memory

Issues Addressed in 2.4.1
Released on April 2, 2019

partial update for the gpomanagementdsc module update in DSC_Images
adding UPN Suffix to adobjects
Update RpsDomainController.ps1
disable ipv6
Using Registry instead of xRegistry

What's New in 2.4
Released on January 29, 2019

PowerShell

This release contains the following PowerShell enhancements:



The RPS Installer was updated to support complex task map execution in order to provide the ability to create ESXi, VMware,
or Hyper-V based hosts and virtual machines.
Added support for ESXi Host and virtual machine configurations.

Improved Installer's ability to generate representative XML for RPS Import by reducing the number of switches required
during the installation/configuration.

Reorganized RPS PowerShell Modules into:

MOD U LE D ES CR IPTION

Rps-Api Core API functions

Rps-Credential Create and access credentials in RPS CMDB

Rps-Dsc Utility to help publish, manage and test RPS DSC Partials

Rps-Encryption Manage certificates and encryption

Rps-Installer RPS Configuration, Data Import and Installation helpers

Rps-IpSheet Import networking information from an IPSheet Excel document

Rps-Network Network Utilities

Rps-Snmp Communicate with network switches

Rps-Types Create and manage RPS Type Definitions

Rps-Utilities Additional Utilities

Rps-Virtualization Management of Virtualization

Refactored New-HypervVirtualMachine to support additional configuration options. The new runbook is now called Set-
HyperVVirtualMachine. Enhancements include support for the following:

Generation 1 virtual machines
Vhd disks
All virtual switch types (Internal, External, Private)
N number of disk/dvd drives and nics (Up to Hyper-V limitations)
Processor configuration
Static/Dynamic memory configuration
Image from .iso, differencing disk, existing disk

Virtual network adapter IP address configuration, including VLAN tagging

In order to take advantage of all these configurable options, the data must be representative of the configuration that
is desired. Below is a representation of the relationship within the Rps type definitions:

OB JECT R PS  ENTIT Y T YPE R PS  T YPE R PS  S U B T YPE PAR ENT OB JECT AS S IG NMENT

Host Resource/Target Host HyperV N/A VirtualMachine

Virtual Machine Target VirtualMachine N/A N/A Host



Virtual NIC Target NIC VirtualMachine N/A VirtualSwitch

VHD(X) Target Drive Disk VirtualMachine N/A

Dvd Target Drive DVD VirtualMachine N/A

Processor Target Processor N/A VirtualMachine N/A

Virtual Switch Resource VirtualSwitch HyperV N/A NIC

OB JECT R PS  ENTIT Y T YPE R PS  T YPE R PS  S U B T YPE PAR ENT OB JECT AS S IG NMENT

To see the configurable properties on each of these objects, please reference the Rps type definitions located at
"ContentStore\Setup\Configuration\Import-RpsTypes.ps1".

Sample configurations are located at "ContentStore\Demos\Set-HyperVVirtualMachine".

D S C 

This release contains the following DSC enhancements:

Added support for multi-step software installs to the Software Distribution Partial.
Updated Runbook Guidance based on lessons learned from ESXi and SNE MVP.

Added support for additional DHCP configuration options in the RpsDhcp partial such as:

Scope option definitions
Scope definitions
Exclusion ranges
Server bindings

Updated Dsc Modules to the following versions:

MOD U LE COR E VER S ION

ComputerManagementDsc 6.0.0.0

ResourceControllerDSC 1.3.1.0

SqlServerDsc 12.1.0.0

xActiveDirectory 2.22.0.0

xHyper-V 3.13.0.0

xWebAdministration 2.3.0.0

Added support for PKI functionlity to support DCA image with new DSC resource MN_ActiveDirectoryCSDsc (Forked from
ActiveDirectoryCSDsc 3.1.0.0). New resource include:

AdcsAiaExtension
AdcsCdpExtension
AdcsCertificateTemplate



AdcsImportCrl
AdcsInstallCertificate
AdcsOcspExtension
AdcsPublishCert
AdcsPublishCrl

Added support for GPO Management functionlity to support NDM image with DSC resource MN_GpoManagementDsc.
New resource include:

GpSecurityFilter

R P S  AP I   

This release contains the following API enhancements:

Added support for structured logging during unattended RPS Installer executions.
Updated the RPS API to optimize Target loading with several Task Map Assignments.

Resource Items and Resource Assignments can now be retrieved by Role, which is a special property designated for tracking
the purpose of a resource item or its relationship to a target item. The Role property can be placed on a Resource Item or
the Resource Assignment and can hold multiple values separated by the |  symbol. To get resource items that have a
specific role or have an assignment with a specific role, use the -MatchAssignmentRole  parameter.

Sample:

    $clientAuthCerts = Get-RpsResourceItem -Type Certificate -Role "ClientAuth"
    $localAdmins = Get-RpsResourceItem -TargetItem $computer -Type Credential -Role "LocalAdministrator" 
-MatchAssignmentRole

Sample:

In this example, a Credential (Resource) is assigned to a Computer (Target). The assignment is given a Role of
"LocalAdministrator". We can retrieve the designated Local Administrator credential for the computer by using the -Role
parameter.

    # assign credential and set roles
    $computer = Get-RpsTargetItem -Type "Computer" -Name "Win137"
    $credential = Get-RpsResourceItem -Type "Credential" -Name "RpsAdministrator"
    $assignedCredential = New-RpsResourceAssignment -TargetItem $computer -ResourceItem $credential
    $assignedCredential.Role = "LocalAdministrator|RpsUser"
    Update-RpsResourceAssignment -ResourceAssignment $assignedCredential

    # retrieve the LocalAdmin credential for the computer
    $localAdminAssignment = Get-RpsResourceAssignment -TargetItem $computer -Role "LocalAdministrator"

Added the -Scope parameter on the New-RpsTaskStep cmdlet.

Sample:



    New-RpsTaskItem -WorkflowName "Resolve-TargetMacAddress"
    New-RpsTaskItem -WorkflowName "Wait-TargetReady"
    New-RpsTaskItem -WorkflowName "Wait-TargetReady"
    New-RpsTaskItem -WorkflowName "Copy-BaseImages"
    New-RpsTaskItem -WorkflowName "New-VMWareVirtualMachine"
    New-RpsTaskItem -WorkflowName "Resolve-TargetDhcpIPAddress"

    # parameter setup
    $baremetalConfig = @{ TargetItemType = "Computer"; Filters = @{ IsHypervisor = "False" } }
    $esxConfig = @{ TargetItemType = "Computer"; Filters = @{ IsHypervisor = "True" } }
    $vmConfig = @{ TargetItemType = "VirtualMachine"; Filters = @{ "IsAppliance" = "False" } }
    $vmApplianceConfig = @{ TargetItemType = "VirtualMachine"; Filters = @{ "IsAppliance" = "True" } }
    $rvpConfig = @{
        TargetItemType = "VirtualMachine";
        Filters = @{ "IsAppliance" = "False"; "Designation" = "RVP" }
    }

    # Task Map creation
    $map = New-RpsTaskMap -Type "ProvisionSystemDemo" -Name "ProvisionSystemDemo"
    $mapConfig = @{ TaskMap = $map; AllowMultipleTargets = $true; IsTargetRequired = $true }

    # Adding steps to task map
    $resolveMac = New-RpsTaskMapStep @mapConfig -RunbookName "Resolve-TargetMacAddress" -TargetItemType 
"Switch"
    $waitBaremetal = New-RpsTaskMapStep @mapConfig -RunbookName "Wait-TargetReady" -TargetItemType 
"Computer"

    $baremetalHV1 = New-RpsTaskMapStep -TaskMap $map -RunbookName "Copy-BaseImages" -Dependencies 
$waitBaremetal @esxConfig
    $baremetalVM1 = New-RpsTaskMapStep @mapConfig -RunbookName "New-VMWareVirtualMachine" -Dependencies 
$baremetalHV1 @vmConfig

    #Adding step with dependecy
    $baremetalVM2 = New-RpsTaskMapStep @mapConfig -RunbookName "Resolve-TargetDhcpIPAddress" @vmConfig -
Dependencies $baremetalVM1 -Scope Self

Admin U I

This release contains the following Admin UI enhancements:

Added LocalNode UI option on execution of Task Map Assignment.
Defaulted Resource Assignment state to Ready where no approval action needs to take place.
Calculated the file hash of an imported file on Import.
Corrected Pending Task Individual Count.
Removed the Pending Actions on targeting list views.
Made the Active and Global flags display consistently throughout the UI.
Replaced the Edit and Remove hyperlinks with command buttons on the TaskMap derail views.
Updated the UI to optimize loading a Target Item's details when several Task Map Assignments exist.
Combined Pending Tasks and Task Information sections into one Job section on the Target Details view.

Resolved I ssues

Top issues addressed in 2.4:

Resource Groups fails to import when group references already exist.
Provisioning Service returns a 500 error if a duplicate object is found.
Calling Set-RpsResourceItem and/or Set-RpsTargetItem with null properties causes a null-reference exception.
Set-RpsResourceItem does not update parent's state when adding children.
Import TaskMap with non-default dependency when scope is ignored.
IpSheet import fails due to missing Access Database Engine pre-requisite.
Task Assignment History not saved while in Session.



RPS Session failing to refresh deleted Task Assignments from Target Item.
Pending Task Individual Count is incorrect in the Target Item Detail view.
Modified the Wait-TargetReady runbook to support both PhysicalMachine and Computer Types.
The Installer's -GenerateXmlOnly switch fails to generate usable file when -ConfigFilename specified.
Added the ability for more than one process to access isolated storage at the same time.
Exported data doesn't include the Task Map Assignment if assigned to Child Item.
Task Map Step Dependency scope is not imported.
Added a fix for Installer when Script fails to fully execute when not running elevated.
Inception deployment fails with an HttpSetServiceConfiguration error.
Import-RpsIpsheet on TestIpSheet takes too long.
Encrypted Dsc partials fail to decrypt when a partial without a credential is applied first.

Known I ssues

RPS Install isn't exporting Host Node info, causing DSC to fail on Node Registration and import.
UserRightsAssignment Dsc resource can sometimes fail due to failure to translate SIDs. See here for more information on
the details. You can see this error exposed in Dsc:

A workaround for this is to open Secpol.msc and remove any untranslated SID's for the targeted user right:



 

 

What's New in 2.3
Released on October 30, 2018

PowerShell

This release contains the following PowerShell enhancements:

Master-Controller now has the ability to run recurring tasks and scheduled tasks.
The Get-DscStatus runbook will now by default run every two hours.
Virtual disk file locations will use the Hyper-V default filepath when creating a virtual machine. You can also optionally
specify an alternate location to store the vhdx.



ServerAdmin role created for all administrative functions required by Rps. It previously required the DomainAdmin role.
Installer can dynamically generate self-signed certificates per deployment. It will use the configuration data supplied to
populate their properties. Can also supply your own certificates. See the Certificate Usage document for details.
Added the capability to suppress reboots for individual software installs.

Reorganized RPS PowerShell Modules into:

MOD U LE D ES CR IPTION

Rps-Api Core API functions

Rps-Credential Create and access credentials in RPS CMDB

Rps-Dsc Utility to help publish, manage and test RPS DSC Partials

Rps-Encryption Manage certificates and encryption

Rps-Installer RPS Configuration, Data Import and Installation helpers

Rps-IpSheet Import networking information from an IPSheet Excel document

Rps-Snmp Communicate with network switches

Rps-Types Create and manage RPS Type Definitions

Rps-Utilities Additional Utilities

D S C 

This release contains the following DSC enhancements:

Created/Updated DSC Partial Configurations to support cross-forest configurations, Provisioning Service, CDN Service

Updated Dsc Modules to the following versions:

MOD U LE COR E VER S ION

AccessControlDsc 1.1.0.0

CertificateDsc 4.4.0.0

ComputerManagementDsc 5.2.0.0

NetworkingDsc 6.1.0.0

SecurityPolicyDsc 2.4.0.0

SqlServerDsc 11.4.0.0

xActiveDirectory 2.21.0.0

xDatabase 1.9.0.0

xDhcpServer 2.0.0.0



xDnsServer 1.11.0.0

xPSDesiredStateConfiguration 8.3.0.0

xSmbShare 2.1.0.0

xWebAdministration 2.2.0.0

xWindowsUpdate 2.7.0.0

MOD U LE COR E VER S ION

R P S  AP I   

This release contains the following API enhancements:

The Task assignment restrictions were relaxed so that a Task Map can be assigned to non-root Target items. The New-
RpsTaskAssignment Cmdlet previously restricted an assignment to only root-level target items. However, the restriction is
no longer applicable within vehicle provisioning scenarios, where the vehicle is the root, DCEs are child items and virtual
machines are grandchildren targets.
Updated the Task Map Dependency scope to allow defining dependencies scoped to "all" (target), "self", and "parent". This
provides the capability to have DCE1 tasks run parallel to DCE2 tasks, given that the DCEs are both children of a SNE parent.
Simplified Task Map creation by creating the New-RpsTaskMapStep Cmdlet. The Cmdlet may accept a runbook name
parameter instead of "TaskItem", essentially eliminating the need for using the existing Task Map structure. In addition, the
New-RpsTaskMapStep Cmdlet will accept filters and dependencies inline.

The New-TaskMapDefinition, New-TaskMapDefFilter, and New-TaskMapDefDependency Cmdlets are marked as obsolete
and have been replaced by the New-RpsTaskMapStep, New-RpsTaskMapStepFilter, and New-RpsTaskMapStepDependency
Cmdlets respectively.

Sample:



 # Create target items
 $sne1 = New-RpsTargetItem -Type Vehicle -Name SNE1
 $switch1 = New-RpsTargetItem -Type Switch -Name "Cisco Switch" -ParentItem $sne1
 $dce1 = New-RpsTargetItem -Type DCE -Name "DCE 1" -ParentItem $sne1
 $dce2 = New-RpsTargetItem -Type DCE -Name "DCE 2" -ParentItem $sne1
 $dce3 = New-RpsTargetItem -Type DCE -Name "DCE 3" -ParentItem $sne1
 $rvpVM = New-RpsTargetItem -Type VM -Name "RVP" -ParentItem $dce2

 # Create tasks
 $task1 = New-RpsTaskItem -WorkflowName "Wait-Switch"
 $task2 = New-RpsTaskItem -WorkflowName "Wait-DCE"
 $task3 = New-RpsTaskItem -WorkflowName "Set-DCEConfig"
 $task4 = New-RpsTaskItem -WorkflowName "New-ESXIVM"
 $task5 = New-RpsTaskItem -WorkflowName "Publish-Dsc"

 # Create task map
 $map = New-RpsTaskMap -Type "Provision-Vehicle" -Name "Provision-SNE"
 $step1 = New-RpsTaskMapStep -TaskMap $map -TaskItem $task1 -TargetItemType Switch
 $step2 = New-RpsTaskMapStep -TaskMap $map -TaskItem $task2 -TargetItemType DCE -Dependencies $step1
 $step3 = New-RpsTaskMapStep -TaskMap $map -TaskItem $task3 -TargetItemType DCE
 New-RpsTaskMapStepDependency -PreviousStep $step2 -Step $step3 -Scope Self
 $step4 = New-RpsTaskMapStep -TaskMap $map -TaskItem $task4 -TargetItemType VM
 New-RpsTaskMapStepDependency -PreviousStep $step3 -Step $step4 -Scope Parent
 $step5 = New-RpsTaskMapStep -TaskMap $map -TaskItem $task5 -TargetItemType VM
 New-RpsTaskMapStepDependency -PreviousStep $step4 -Step $step5 -Scope Self

 # Assign map
 New-RpsTaskAssignment -TaskMap $map -TargetItem $sne1

Sample: Inline filters and dependencies

 $byFilter = New-RpsTaskMapStep -TaskMap $map -Filters @{ Type = "VirtualMachine"; IsDsc = $true }
 $withDependencies = New-RpsTaskMapStep -TaskMap $map -Dependencies @( $step1, $step2 )
 $byRunbookName = New-RpsTaskMapStep -TaskMap $map -RunbookName "Publish-Dsc"

Added the ability to nest Resource Groups in order to enable RPS to model many complex scenarios such as AD Security
groups.

Sample:



 # Define a new Type Definition with the IsGroupReference flag
 Set-RpsResourceType -Name "ADGroup" -IsRoot -IsGroupReference

 # Create AD Groups
 $ADDomainUsersGroup = New-RpsResourceGroup -Type "ADGroup" -Name "All Domain Users"
 $ADAdminGroup = New-RpsResourceGroup -Type "ADGroup" -Name "Domain Admins"
 $ADDNSAdminGroup = New-RpsResourceGroup -Type "ADGroup" -Name "DNS Admins"
 $ADDirectorsGroup = New-RpsResourceGroup -Type "ADGroup" -Name "Directors"

 # Create AD Users and asign them to groups
 $AdUser1 = New-RpsResourceItem -Type "AdUser" -Name "AdUser1" -ResourceGroup $ADDomainUsersGroup -
IsGlobal $true
 $AdUser2 = New-RpsResourceItem -Type "AdUser" -Name "AdUser2" -ResourceGroup $ADAdminGroup -IsGlobal 
$true
 $AdUser3 = New-RpsResourceItem -Type "AdUser" -Name "AdUser3" -ResourceGroup $ADAdminGroup -IsGlobal 
$true
 $AdUser4 = New-RpsResourceItem -Type "AdUser" -Name "AdUser4" -ResourceGroup $ADDNSAdminGroup -IsGlobal 
$true
 $AdUser5 = New-RpsResourceItem -Type "AdUser" -Name "AdUser5" -ResourceGroup $ADDirectorsGroup -IsGlobal 
$true
 $AdUser6 = New-RpsResourceItem -Type "AdUser" -Name "AdUser6" -ResourceGroup $ADDirectorsGroup -IsGlobal 
$true

 # Add AdUser3 to the AD Directors Group as well
 $ADDirectorsGroup.AddChildItem($AdUser3)
 Update-RpsResouceGroup -ResourceGroup $ADDirectorsGroup

 # Get Group references
 $ADAdminGroupRef = Get-RpsResourceItem -Id $ADAdminGroup.Id
 $ADDNSAdminGroupRef = Get-RpsResourceItem -Id $ADDNSAdminGroup.Id
 $ADDirectorsGroupRef = Get-RpsResourceItem -Id $ADDirectorsGroup.Id

 # Assign Group references to All Domain Users Group
 $ADDomainUsersGroup.AddChildItem($ADAdminGroupRef)
 $ADDomainUsersGroup.AddChildItem($ADDNSAdminGroupRef)
 $ADDomainUsersGroup.AddChildItem($ADDirectorsGroupRef)
 $ADDomainUsersGroup.Update()

Find-Rps* Cmdlets have been deprecated and renamed to Get-Rps* with the same functionality. The original Find cmdlets
have been retained and marked obsolete. However, they will be removed in a future release.

Added new Set-RpsTargetItem and Set-RpsResourceItem Cmdlets. Both Target and Resource Items can be created and
edited via their respective Set-RpsTargetItem and Set-RpsResourceItem Cmdlets.

Sample: Create a new target item via Set-RpsTargetItem

 $computer = Set-RpsTargetItem -Type "Computer" -Name "Win137" -ParentItem $serverRack

Sample: Update an existing target item via Set-RpsTargetItem

 $computer = Set-RpsTargetItem -Type "Computer" -Name "Win137" -IsActive $false

Sample: Create a new resource item via Set-RpsResourceItem

 $resourceItem = Set-RpsResourceItem -Type "type" -Name "name"

Sample: Update an existing resource item via Set-RpsResourceItem

 $resourceItem = Set-RpsResourceItem -Type "type" -Name "name" -IsActive $false

Updated the Target Type Definitions to include a child type for Actions. Actions link a Target of a certain type to a TaskMap.



This allows a user to easily determine the status of an Action via the Admin UI.

Added support for the retrieval of Target items, Target groups, Resource items, and Resource groups via wildcard property
filters. The Get-RpsTargetItem, Get-RpsTargetGroup, Get-RpsResourceItem, and Get-RpsResourceGroup Cmdlets will return
target\resource items and target\resource groups respectively using the properties supplied. If no properties are supplied,
all items\groups will be returned. When using the -Filter Parameter, a $null value may be passed as a wildcard.

Sample: Get target items by properties

 $foundItem = Get-RpsTargetItem -Filter @{"MAC" = "00:11:22:33:44:55"}
 $foundAllItemsWithMACProperty = Get-RpsTargetItem -Filter @{"MAC" = $null}

Modified the API to allow for duplicate Task Map assignments to be created. RPS prevented assigning a Task Map to the
same Target item more than once. This restriction was a legacy component in order to prevent Task Maps from changing
after they were assigned. However, many scenarios such as the patching and provisioning processes are required to be run
multiple times. Allowing Task Maps to be run multiple times enables RPS to have a cleaner user interface, cleaner logic, and
overall better response times.

Added a new Get-RpsConstants Cmdlet that will return all the defined RPS constants.

Sample:

 $rps = Get-RpsConstants

Added Get-RpsInstanceDefinitionItem Cmdlet. Sample:

    Get-RpsInstanceDefinitionItem -Id "8825A09C-CCE3-4BB0-BCE1-03B4729AC423"
    Get-RpsInstanceDefinitionItem -Name MyInstanceDefItem
    Get-RpsInstanceDefinitionItem -ResourceItem $resourceItem -Filter $filterHashtable

Admin U I

This release contains the following Admin UI enhancements:

Added the TaskMap dependency scope to the TaskMap detail page.
Added the ability to navigate between nested Resource Groups within the user interface.
Changed the user interface's default landing page to the local Node's detail page.
Added a section to the Node's detail page to display the status of its child Target items.
Added the display of associated Actions to the Target Item detail page. This allows a user to easily determine the status of an
assigned TaskMap, such as "SNE Provisioning", and start the TaskMap if necessary via the Admin UI.
The Folder detail page was modified to list the files contained within the CDN folder.
Added bread crumbs to the user interface to simplify site navigation.
Simplified the Target details page by modifying the view to present just the high-level processes that are running and to use
drill-downs view to access the more detailed information.
Added a new detail page for Task Map Assignment.
Added a new detail page for Resource Assignment.
Modified the Target Group page to allow for adding and removing Target items to and from a group.
Added the ability to select from any Task Map or Task item when assigning a new task to a Target item.

R P S  Sync Service  

This release contains the following Sync Service enhancements:

Separated process of requesting changes and sending changes, so a child node will not block operations on a parent node.
Queue received changes on all nodes, so changes won't be re-transferred on merge errors.
Added Snapshot Isolation to transactions to avoid inconsistent data when gathering changes.
Audit fields have been added to CMDB objects for use by Sync processes. These will be used by API in 2.4.



R P S  C D N    

This release contains the following RPS Content Delivery Network (CDN) enhancements:

CDN now uses Background Intelligent Transfer Service (BITS) to transfer files from Parent to Child CDN.
CDN uses hierarchical topology, where child requests files from parent, instead of full mesh used by DFS-R.
CDN includes a new Indexer Service which stores File and Folder information in the CMDB to reduce duplicate transfers.

B aremetal P rovisioning Service 

The RPS Provisioning Service is an HTTP-based Web API hosted in IIS for use in brokering information from the RPS CMDB to a
pre-execution environment such as iPXE for installation of a defined image and configuration. For instance, iPXE can be
configured to "point to" the Provisioning Service which will return a boot script file for the MAC address requested.

This release contains the new Baremetal Provisioning Service with the following features:

Return iPxe boot scripts from an http/https service based on matching devices in the CMDB.
Host full images (such as .iso, .wim) in the service for download from iPxe.
Host ESXi Kickstart scripts for ESXi configuration support.
Support approval of base image through Resource Assignments in CMDB.
Avoid boot looping through a configurable iPxe expiration period.

Resolved I ssues

Top issues addressed in 2.3:

RPS objects were not consistently setting dates\times to UTC dates\times.
The DependsOn attribute was not handling all options.
In RpsSession, the TaskAssignment Cmdlets attempted to transact with the Database.
Internet Explorer failed to display glyph icons when using custom Cache-Control.
The RpsGui Partial throws an error when applying SSL Certificate.
In Server 2012, the New-HyperVVirtualMachine Runbook fails to add NICs to new VirtualMachines.
Remove-ItemProperty fails in RpsSession.
Test-DSCConfiguration returns false on CMDB deployment even after dacpac is deployed.
Property Bag missing support for deleting a property.
Target Item to GetResourceGroups and Resource to GetTargetGroups returns duplicate groups if group contains multiple
members.
Duplicate node error upon entering previously saved RpsSession.
Calling Install-Rps for a specific node fails to create a parent node.
Sync property replication failure.
Sql Encryption fails to apply correctly.

Known I ssues

UserRightsAssignment Dsc resource can sometimes fail due to failure to translate SIDs. See here for more information on
the details. You can see this error exposed in Dsc:

A workaround for this is to open Secpol.msc and remove any untranslated SID's for the targeted user right:





Using the RPS API
Last updated on January 13, 2021.

Last Reviewed and Approved on PENDING REVIEW

NOTE

Find-Rps* Cmdlets have been deprecated and renamed to Get-Rps* with the same functionality, Find verb will be removed in a feature release.

Target Items
Create Target I tems

TIP

Target Items can also be created via Set-RpsTargetItem.

Create a new target item

$computer = New-RpsTargetItem -Type "Computer" -Name "Win137"

Create a new target item child

Specify the parent item when creating a child item. You can nest target items as deep as necessary.

$nic = New-RpsTargetItem -Type "NetworkInterface" -Name "137-NIC1" -ParentItem $computer

Add a ch ild code to an exist ing Node 

Add-RpsChildNode -ChildNode $childNode

Set-RpsNode and update is parameters

Update a node by object

Set-RpsNode -Node $node

Update a node by parameters

Set-RpsNode -Name name -HostName hostName -IpAddress 10.0.0.1

Create a new target item with P roper t ies   

Use a PowerShell Hashtable to pass properties when creating a new target item.

$platform = @{
    Architecture = "x64"
    OSVersion = "8.1"
    OSType = "Windows"
}
$computer = New-RpsTargetItem -Type "Computer" -Name "Win137" -Properties $platform

Create a target item for a different Node

By default, RPS will create new target items for the current node, but you can supply an alternative node.







$site2 = Get-RpsNode -Name "Site 2"
New-RpsTargetItem -Type "Computer" -Name "Win137" -Node $site2

G et Target I tems 

Use the Get-RpsTargetItem  cmdlet to retrieve target items from RPS. Retrieve a single item using the -Id  parameter, or retrieve
multiple items using any combination of parameters.

G et target items by type

$allRouters = Get-RpsTargetItem -Type "Router"

G et target items by proper ty value 

Target Items can be filtered by a specific property or properties.

$deviceByMac = Get-RpsTargetItem -Filter @{ "MacAddress" = "00:11:22:33:44:55" }

Target Items can be filtered by a specific property that contains a given value.

$deviceByMac = Get-RpsTargetItem -Filter @{ "Contains-MacAddress" = "33:44" }

G et target items by proper ty 

Target Items can be retrieved which have any value for a specific property. To retrieve items with a property, use $null  for the
value in the -Filter  parameter.

$allDevicesWithMac = Get-RpsTargetItem -Filter @{ "MacAddress" = $null }

G et target items by Node

Target items can be retrieved for a specific node.

TIP

The Node parameter is currently limited to just selecting root target items within the specified node. A future update may expand the search to
all items within the Node, including child items.

$site2Computers = Get-RpsTargetItem -Node $site2 -Type "Computer"

Update Target I tems

Update target items using the Set-RpsTargetItem  cmdlet. The Set-Rps*  cmdlets will also create items if they don't exist.

The standard way to update an item uses the item's logical identifier, which is Type and Name. To update an existing target item,
supply the -Type  and -Name  parameters and any additional parameters you wish to change.

Update an exist ing target item

$computer = Set-RpsTargetItem -Type "Computer" -Name "Win137" -IsActive $false

Resource Items
Create Resource I tems

Create a new resource item

$resourceItem = Set-RpsResourceItem -Type "type" -Name "name"





Update an exist ing resource item

$resourceItem = Set-RpsResourceItem -Type "type" -Name "name" -IsActive $false

G et Resource I tems 

G et all resource items

$allItems = Get-RpsResourceItem

G et resource items by proper t ies  

$foundItemsWithSpecificKBNumber = Get-RpsResourceItem -Filter @{"KbNumber" = "3135782"}
$foundAllItemsWithKBNumber = Get-RpsResourceItem -Filter @{"KbNumber" = $null}

Resource Items can be filtered by a specific property that contains a given value.

$foundItemsWithPartialKBNumber = Get-RpsResourceItem -Filter @{"Contains-KbNumber" = "782"}

G et resource items by role

Resource Items can be retrieved by Role, which is a special property designated for tracking the purpose of a resource item or it's
relationship to a target item. To get resource items that have a specific role or have an assignment with a specific role, use the 
-MatchAssignmentRole  parameter. See the section below on Resource Assignments for more info.

$clientAuthCerts = Get-RpsResourceItem -Type Certificate -Role "ClientAuth"
$localAdmins = Get-RpsResourceItem -TargetItem $computer -Type Credential -Role "LocalAdministrator" -
MatchAssignmentRole

Target / Resource Groups
G et target groups by name and proper t ies :  Sample 1   

$foundGroupByName = Get-RpsTargetGroup -Name "Target Group Name"
$foundGroups = Get-RpsTargetGroup -Filter @{"Color" = "Yellow"; "Food" = "Apples"; }
$foundAllGroupsWithColor = Get-RpsTargetGroup -Filter @{"Color" = $null}

Target Groups can be filtered by a specific property that contains a given value.

$foundGroups = Get-RpsTargetGroup -Filter @{"Contains-Color" = "llow"; }

G et resource groups by I d.  :  Sample 1   

$foundGroup = Get-RpsResourceGroup -Id $resourceGroup.Id

G et resource groups by proper t ies.  :  Sample 2    

 $foundGroups = Get-RpsResourceGroup -Filter @{"Color" = "Yellow"}
 $foundAllGroupsWithColor = Get-RpsResourceGroup -Filter @{"Color" = $null}

Resource Groups can be filtered by a specific property that contains a given value.

$foundGroups = Get-RpsResourceGroup -Filter @{"Contains-Color" = "llow"}

Add resource group

 $resourceGroup = New-RpsResourceGroup -Type "testGroupType" -Name "GroupName" 

Add resource group with proper t ies 



 $resourceGroup = New-RpsResourceGroup -Type "testGroupType" -Name "GroupName" -Properties @{ "Prop1" = 
'Prop1' }

Add Resource I tem to Resource G roup 

There are two methods to add a Resource Item to a Resource Group. A Resource Item can be assigned to a Resource Group
during its initialization. The Resource Group must exist prior to assigning a Resource Item to a Resource Group during its
initialization, as shown in the first example.

Add Resource I tem in Resource G roup in in it ializat ion    

$resourceItem = New-RpsResourceItem -Type "testType" -Name "TestResourceItem" -ResourceGroup 
$TestResourceGroup

Additionally, if the Resource Item and the Resource Group already exist, the Resource Item can be added to the Resource Group,
as shown in the next example.

Add Resource I tem to Resource G roup via AP I  

$testResourceGroup = Get-RpsResourceGroup -Name "TestResourceGroup"
$testResourceItem = Get-RpsResourceItem -Name "TestResourceItem"

Add-RpsResourceGroupMember -ResourceGroup $testResourceGroup -ResourceItem $testResourceItem

Replace/Set ch ild resource items and update proper t ies on exist ing Resource G roup    

Using Set-RpsResourceGroup  with the parameter -ResourceItem  will replace any existing child resource items.

$testResourceGroup = Get-RpsResourceGroup -Name "TestResourceGroup"
$testResourceItem = Get-RpsResourceItem -Name "TestResourceItem"
$properties = @{Color = "Blue"}

Set-RpsResourceGroup -ResourceGroup $testResourceGroup -ResourceItem $testResourceItem -Properties 
$properties

Add Target I tem to Target G roup 

There are two methods to add a Target Item to a Target Group. A Target Item can be assigned to a Target Group during its
initialization. The Target Group must exist prior to assigning a Target Item to a Target Group during its initialization, as shown in
the first example.

Add New Target I tem to Target G roup 

$targetItem = New-RpsTargetItem -Type "Computer" -Name "Server 150" -TargetGroup $servers

Additionally, if the Target Item and the Target Group already exist, the Target Item can be added to the Target Group, as shown in
the next example.

Add Target I tem to Target G roup via AP I  

$testTargetGroup = Get-RpsTargetGroup -Name "TestTargetGroup"
$testTargetItem = Get-RpsTargetItem -Name "TestTargetItem"

Add-RpsTargetGroupMember -TargetGroup $testTargetGroup -TargetItem $testTargetItem

Replace/Set ch ild target items and update proper t ies on exist ing Target G roup    

Using Set-RpsTargetGroup  with the parameter -TargetItem  will replace any existing child target items.



$testTargetGroup = Get-RpsTargetGroup -Name "TestTargetGroup"
$testTargetItem = Get-RpsTargetItem -Name "TestTargetItem"
$properties = @{Color = "Blue"}

Set-RpsTargetGroup -TargetGroup $testTargetGroup -TargetItem $testTargetItem -Properties $properties

Resource Assignment
A Resource Assignment is the assignment of a specific Resource Item to a specific Target Item. The assocation between the two
items can contain Properties, a Status, and other useful information for automations. For example, a resource assignment can
track the assignment of a Software Package (Resource) to a Computer (Target). The status may be used to indicate if that software
is approved, installed, or up to date.

For convenience, you can specify a resource group in order to quickly assign multiple resources to a target. You can also specify a
target group, or both!

NOTE

As of Release 2.2, duplicate assignments are not allowed. While allowing the assignment to groups, we are enforcing constraints to prevent
duplicitous Assignments.

Create Resource Assignments

Assign a Resource I tem to Target I tem 

$assign = New-RpsResourceAssignment -ResourceItem $software -TargetItem $computer

Assign a Resource I tem to Resource Source

$assign = New-RpsResourceAssignment -ResourceItem $resourceItem -TargetItem $targetItem -ResourceState 
$approved

Assign mult iple Resource I tems to Target I tems using G roups   

$assignments = New-RpsResourceAssignment -ResourceGroup $securityHotfixes -TargetGroup $allComputers

G et Resource Assignments

Use the Get-RpsResourceAssignment  cmdlet to retrieve assignments.

G et Assignments for a Target I tem 

$computer = Get-RpsTargetItem -Type "Computer" -Name "Win137"
$assignedCredentials = Get-RpsResourceAssignment -TargetItem $computer -Type $rps.ResourceTypes.Credential

G et Assignments by Role

Role is a special property used frequently in RPS to track the purpose of the resource item's association to a target item. The Role
property can be placed on a Resource Item or the Resource Assignment, and can hold multiple values separated by the |  symbol.

In this example, a Credential (Resource) is assigned to a Computer (Target). The assignment is given a Role of
"LocalAdministrator". We can retrieve the designated Local Administrator credential for the computer by using the -Role
parameter.





# assign credential and set roles
$computer = Get-RpsTargetItem -Type "Computer" -Name "Win137"
$credential = Get-RpsResourceItem -Type "Credential" -Name "RpsAdministrator"
$assignedCredential = New-RpsResourceAssignment -TargetItem $computer -ResourceItem $credential
$assignedCredential.Role = "LocalAdministrator|RpsUser"
Update-RpsResourceAssignment -ResourceAssignment $assignedCredential

# retrieve the LocalAdmin credential for the computer
$localAdminAssignment = Get-RpsResourceAssignment -TargetItem $computer -Role "LocalAdministrator"```

Update Resource Assignments

Like Task Assignments, Resource Assignments track the history of State changes. Update a resource assignment with the Update-
RpsResourceAssignment cmdlet.

Update state of the patch assignment to D enied

The system default of a Resource Assignment is Approved. Here, we want to be able to set whether an administrator is going to
Approve or Deny the patch. To manually update the Resource State for the patch, we run the following:

$assignment.ResourceState = "Denied"
Update-RpsResourceAssignment -ResourceAssignment $assignment

Create Patch G roup

An updated feature for Release 2.2 is the ability to create Patch Groups. With Patch Groups, a user can add multiple children
(members) to the group. This allows for the deployment of multiple patches, simultaneously.

Here, we are creating a new RPS Resource Group, called: $patchGroup .

# Creating patch group
$patchGroup = New-RpsResourceGroup -Type Patch -Name DemoPatches

# Add children to the patch group
Add-RpsResouceGroupMember -ResourceGroup $patchGroup -ResourceItem $hotfixJuly, $patch2, $patch3

Now that we have created our patch group and added our 3 children, we can assign our updated Patch to the Target Item.

Assign group of patches to a laptop

Assign the updated Patch Group to the Target Item, $demoLaptop .

New-RpsResourceAssignment -ResourceGroup $patchGroup -TargetItem $demoLaptop

Protected Properties
A Protected Property is a property in any property list that is marked as protected. Once a property is marked as protected, the
data is encrypted and the property is marked as protected. To create a Protected Property use the cmdlet Set-Rps
ProtectedProperty described below. To retrieve the value from a Protected Property use the cmdlet Get-RpsProtectedProperty as
described below.

G et a P rotected P roper ty   

Retrive a protected property from a Rps item by passing in the item and name of the property. The cmdlet returns a SecureString.



$name = 'Property Name'
$secureResult = Get-RpsProtectedProperty -TargetItem $targetItem -Name $name 
$secureResult = Get-RpsProtectedProperty -ResourceItem $resourceItem -Name $name 
$secureResult = Get-RpsProtectedProperty -Node $node -Name $name 
$secureResult = Get-RpsProtectedProperty -TaskMapAssignment $taskMapAssignment -Name $name 
$secureResult = Get-RpsProtectedProperty -ResourceGroup $resourceGroup -Name $name 
$secureResult = Get-RpsProtectedProperty -TargetGroup $targetGroup -Name $name 

# return variable to plain text
$plainText = ConvertFrom-SecureString $secureResult

Set a P rotected P roper ty  

To add or update a protected property to any Rps properties collection by passing in the item, name of the property, and a
SecureString for the value. The cmdlet returns a true if successful.

#setup
$securePwd = ConvertTo-SecureString "Password" -AsPlainText -force

$result = Set-RpsProtectedProperty -TargetItem $targetItem -Name "Password" -Value $securePwd
Set-RpsProtectedProperty -TargetItem $targetItem -Name $name -Value $securePwd
Set-RpsProtectedProperty -ResourceItem $resourceItem -Name $name  -Value $securePwd
Set-RpsProtectedProperty -Node $node -Name $name -Value $securePwd
Set-RpsProtectedProperty -TaskMapAssignment $taskMapAssignment -Name $name -Value $securePwd
Set-RpsProtectedProperty -ResourceGroup $resourceGroup -Name $name -Value $securePwd
Set-RpsProtectedProperty -TargetGroup $targetGroup -Name $name -Value $securePwd

Password Policy
A Password Policy is a set of password guidelines for a particular system or group of systems. The policy is saved in the database
as a Resource Item.

The default minimum password length is 16 characters
The default maximum password length is 64 characters
A WhiteList, when specified, denotes the only characters allowed in a password
A BlackList, when specified, denotes the only characters disallowed from the standard list, which can be found by executing
the code below PowerShell $charList = [Rps.Api.Utils.PasswordUtils]::DefaultPasswordCharacters

Set Password Policy

The following code creates a password policy with a minimum and maximum length and saves that policy to the connected data
store

$policy = Set-RpsPasswordPolicy -Name WindowsPasswordPolicy -MinLength 8 -MaxLength 16 

G et Password Policy

The following code retrieves the policy that was previously created

$retrievedPolicy = Get-RpsPasswordPolicy -Name WindowsPasswordPolicy

Password
A Password is a secret string of characters used to gain access to something

G enerate Password

A password can be generated using default parameters or by specifying a Password Policy to use. The password can be returned
as either a plaintext or secure string by using the AsSecureString switch. Passwords are not persisted to the data store by default.



$newPassword = New-RpsPassword -AsSecureString

$policy = Set-RpsPasswordPolicy -MinLength 20 -MinUppers 5 -MinNumbers 3
$newPassword = New-RpsPassword -PasswordPolicy $policy

Instance Definition
Instance Definitions are pre-defined data sets that consist of various Type Definitions, Items, and Associations between Items that
can be used to create complex concrete objects.

Create I nstance D efin it ion   

Creates an Instance Definition by providing a Name, Properties, and a Parent Node

$nodeId = "81B8272D-B49C-4350-A8F4-ABBB9CE29C68"
$hs = @{
    Prop1 = "value1"
    Prop2 = "value2"
}
New-RpsInstanceDefinition -Name testName -Properties $hs -ParentNodeId $nodeId

G et I nstance D efin it ion    

Retrieves an Instance Definition by ID or Name

Get-RpsInstanceDefinition -Id "8825A09C-CCE3-4BB0-BCE1-03B4729AC423"
Get-RpsInstanceDefinition -Name testName

Set I nstance D efin it ion   

Creates or Updates Instance Definitions, associated Properties, and associated parent Node.

Set-RpsInstanceDefinition -Name $Name1
Set-RpsInstanceDefinition -Name $Name1 -Properties @{Prop1 = "Value1"}
Set-RpsInstanceDefinition -Name $Name1 -Properties @{Prop1 = "Value1"} -ParentNodeId $nodeId

Remove I nstance D efin it ion   

Removes an Instance Definition by ID or by object

Remove-RpsInstanceDefinition -Id "8825A09C-CCE3-4BB0-BCE1-03B4729AC423"
Remove-RpsInstanceDefinition -InstanceDefDefinition $InstanceDefinition

I nvoke an I nstance D efin it ion    

Creates an instance from the definition using settings stored in a resource item.

Invoke-RpsInstanceDefItem -Settings $resourceItem -InstanceDef $instanceDefinition

G et I nstance D efin it ion Reference    

Retrieves an Instance Definition Reference by providing an Instance Definition and an Instance Definition Item.

    $instanceDef = Get-RpsInstanceDefinition -Name "MyDefinition"
    $instanceDefItem = Get-RpsInstanceDefinitionItem -Name "MyItem"
    $reference = Get-RpsInstanceDefinitionReference -Name "name" -InstanceDefinition $instanceDef -
InstanceDefinitionItem $instanceDefItem

New I nstance D efin it ion Reference   



Creates a new Instance Definition Reference.

    $instanceDef = Get-RpsInstanceDefinition -Name "MyDefinition"
    $instanceDefItem = Get-RpsInstanceDefinitionItem -Name "MyItem"
    $taskMapIDs = "5b8b0340-091f-4823-b2f9-de937b5b4114", "a83b5445-3cc0-433e-b5e0-0fcf70389988"
    $reference = New-RpsInstanceDefinitionReference -Name "name" -InstanceDefinition $instanceDef -
InstanceDefinitionItem $instanceDefItem -TaskMapIDs $taskMapIDs

Remove I nstance D efin it ion Reference   

Removes an Instance Definition Reference by Instance Definition and Instance Definition Item.

    $instanceDef = Get-RpsInstanceDefinition -Name "MyDefinition"
    $instanceDefItem = Get-RpsInstanceDefinitionItem -Name "MyItem"
    Remove-RpsInstanceDefinitionReference -Name "name" -InstanceDefinition $instanceDef -
InstanceDefinitionItem $instanceDefItem

Instance Definition Item
An Instance Definition Item is a part of an Instance Definition that can be used to create concrete items such as Target Items,
Resource Items, etc.

G et I nstance D efin it ion I tem     

Retrieves an Instance Definition Item by ID, by Name, or by Resource Item.

Get-RpsInstanceDefinitionItem -Id "8825A09C-CCE3-4BB0-BCE1-03B4729AC423"
Get-RpsInstanceDefinitionItem -Name MyInstanceDefItem
Get-RpsInstanceDefinitionItem -ResourceItem $resourceItem -Filter $filterHashtable

Create I nstance D efin it ion I tem    

Creates a new Instance Definition Item by providing an Entity Name, Name, Properties, and Type Definition ID

New-RpsInstanceDefinitionItem -EntityName testEntityName -Name name2 -Properties @{Prop1 = "Value1"} -
TypeDefinitionId $typedefinition.id

Set I nstance D efin it ion I tem    

Creates or Updates Instance Definition Items and associated Properties.

Set-RpsInstanceDefinitionItem -Name $Name1 -TypeDefinitionId $id -EntityName $entityName
Set-RpsInstanceDefinitionItem -Name $Name1 -TypeDefinitionId $id -Properties @{Prop1 = "Value1"} -EntityName 
$entityName 

Remove I nstance D efin it ion I tem    

Removes an instance definition item by either its Id or the instance definition item

Remove-RpsInstanceDefinitionItem -Id "8825A09C-CCE3-4BB0-BCE1-03B4729AC423"
Remove-RpsInstanceDefinitionItem -InstanceDefinitionItem $InstanceDefinitionItem

Instance Definition Node
Create an I nstance D efin it ion Node   

An Instance Definition Node is a wrapper for an RPS type and associated Properties.

New-RpsInstanceDefinitionNode -EntityName testEntityName -Name name2 -Hostname hostname -IPAddress 1.1.1.1 -
SyncEndpointUrl syncEndpoint -certificateThumbprint certThumbprint -pollingInterval 1



Set I nstance D efin it ion Node   

Creates or updates an Instance Definition Node.

Set-RpsInstanceDefinitionNode -Name name1 -EntityName testEntityName2 -Hostname hostname2 -IPAddress 2.2.2.2 
-SyncEndpointUrl syncEndpoint2 -certificateThumbprint certThumbprint2 -pollingInterval 2

G et I nstance D efin it ion Node    

Get an Instance Definition Node by name.

Get-RpsInstanceDefinitionNode -Name name1 

Remove I nstance D efin it ion Node   

Removes an Instance Definition Node by ID or by object

Remove-RpsInstanceDefinitionNode -Id "8825A09C-CCE3-4BB0-BCE1-03B4729AC423"
Remove-RpsInstanceDefinitionNode -InstanceDefDefinitionNode $InstanceDefinitionNode

Remove I nstance D efin it ion Associat ion    

Removes an Instance Definition Association by ID or by object

$instanceDef = Get-RpsInstanceDefinition -Name "MyDefinition"
$instanceDefItem = Get-RpsInstanceDefinitionItem -Name "MyItem"
$instanceDefItem2 = Get-RpsInstanceDefinitionItem -Name "MyItem2"
Remove-RpsInstanceDefinitionAssociation-InstanceDefinition $instanceDef -PrimaryReference $instanceDefItem -
Secondaryreference $instanceDefItem2

New I nstance D efin it ion Associat ion    

Creates an Instance Definition Association by ID or by object

$instanceDef = Get-RpsInstanceDefinition -Name "MyDefinition"
$instanceDefItem = Get-RpsInstanceDefinitionItem -Name "MyItem"
$instanceDefItem2 = Get-RpsInstanceDefinitionItem -Name "MyItem2"
New-RpsInstanceDefinitionAssociation-InstanceDefinition $instanceDef -PrimaryReference $instanceDefItem -
Secondaryreference $instanceDefItem2

G et I nstance D efin it ion Associat ion     

Creates an Instance Definition Association by ID or by object

$instanceDef = Get-RpsInstanceDefinition -Name "MyDefinition"
$instanceDefItem = Get-RpsInstanceDefinitionItem -Name "MyItem"
$instanceDefItem2 = Get-RpsInstanceDefinitionItem -Name "MyItem2"
Get-RpsInstanceDefinitionAssociation-InstanceDefinition $instanceDef -PrimaryReference $instanceDefItem -
Secondaryreference $instanceDefItem2

Types
Set Target Type

To Create or Update a RPS Target Type.

Set-RpsTargetType -Name Computer -IsRoot 

Set Resource Type

To Create or Update a RPS Resource Type.



Set-RpsResourceType -Name Host -IsRoot -EnableSubType 

Set Sub Type

To Create or Update a RPS Sub Type.

Set-RpsSubType -Parent $patchDef -SubType 'CAB' 

Set Child Type

To Create or Update a RPS Child Type.

 Set-RpsChildType -Parent $def -ChildType $Rps.TargetTypes.NIC
    -DisplayName 'Network Adapters' -IsRequired -AllowMultiples 

Set Type P roper ty 

To Create or Update a RPS Type Propery template.

New-RpsTypeProperty -Parent $template -Name VmType -PropertyType Text -IsRequired -DefaultValue 2012R2 

Set Type Resource Assignment

Creates or updates a Resource Assignment template.

Set-RpsTypeRA -Parent $template -ResourceType 'Host' -DisplayName 'Hypervisor Host' -IsRequired 

Set Target Action

Associates an action (TaskMap Type) with a Target Type definition.

 Set-RpsTargetAction -Parent $template -TaskMapType 'Provision-Vehicle' -Description 'Provision SNE'

Set Resource G roup Type

Creates or updates a Resource Group Type

 Set-RpsResourceGroupType -Name MyResourceGroupType -IsGroupReference

Set Target G roup Type

Creates or updates a Target Group Type

 Set-RpsTargetGroupType -Name MyTargetGroupType -IsGroupReference



RPS Sample Scenario - Tourism
Last updated on January 13, 2021.

Last Reviewed and Approved on PENDING REVIEW

The Rapid Provisioning System is designed to provide a mobile, modular, and extensible automation framework that allows
coded automation activities to be executed across a wide-area network environment with limited connectivity and bandwidth. The
breadth of customization options can sometimes be overwhelming, so this Sample Scenario has been designed as an example of
what RPS can do even on a small scale. A working knowledge of RPS entities and architecture is recommended prior to reading
this guide. It is recommended that this sample data NOT be imported into a production environment.

Sample Dataset
Tourism Sample D ataset

In this example, RPS is used to support the technical operations of a Grand Canyon Touring company, GC Tour Guides. GC Tour
Guides must rely on satellite and line-of-sight networking solutions for guides on tour, due to the extreme geology of the terrain
and lack of reliable network connectivity on tour routes. Guides are equipped with a handheld device that contains all the
necessary information and applications to get through their tour routes, including maps, a GPS tracker, communications services
such as email and instant messaging, and inventory management. Additionally, guides take a minimum of two pack animals –
mostly donkeys – with them on the trails. Each donkey has a tracker attached with sensors that detect and report on many
environmental and biological events or changes, such as GPS coordinates, current heading, humidity, and even health statistics of
the donkey, such as skin temperature, heart rate, number of steps and so on.

GC Tour Guides has deployed RPS to automate configuration and data management between the guides’ handhelds, the pack
animals’ trackers, and headquarters. Additionally, RPS is used to transfer patches and updated map files to these devices. Finally,
GC Tour Guides defines and deploys the configuration of their devices through PowerShell Desired State Configuration.

The donkeys are grouped together in a Target Group (TG) called “Donkeys” with the type “Tracker.” Each Donkey is defined as a
Target Item (TI) within the Donkeys TG. Target Items can have several custom properties assigned, and in this example, we have
defined Manufacturer and Model as custom TI properties. Another TG is created for the guides, with a guide TI named “Clarence.”
Handheld TIs are grouped in a TG called Handhelds.

Before a guide leaves on a tour, a TG is created with all the entities that are scheduled to go on the tour. In our example, the guide
Clarence, two donkeys, and a handheld are scheduled for June 2017 tour within a TG called “Guide Tour June 2017.” By grouping
the entities within a TG, inventory can be tracked and alerts can be set to go off if a Donkey TI’s GPS Coordinates drift too far from
the Handheld TI’s GPS Coordinates, for example.

Continuing, we group two Patches as Resource Items (RI) within a Resource Group (RG) called “TrackerPatches.” These are
patches that will apply to just Tracker TIs. Finally, the Patch RG is associated with the Donkeys TG using a Resource Assignment
(RA), which creates a link between each patch RI and applicable donkey TI. Figure 1 illustrates the example dataset.



Impor ting Sample D ata 

A fully functioning RPS Node is required to import the sample data from the script Import-TourGuidesGCSampleData.ps1
(located at $\Documents\Samples). To import the sample data, simply run the script from any RPS machine from a PowerShell
console as shown in Figure 2. You will initially be prompted to clean the RPS database of any existing RPS Entities.

Proceed as necessary, and the objects described in this document will be created in the RPS CMDB. Once the data is imported
(expected output is shown in Figure 3), you can begin manipulating the data as necessary to familiarize yourself with the RPS
system.



D esired S tate Configuration 

GC Tour Guides would like to configure Clarence’s handheld with DSC to ensure that it is in the correct state during expeditions.

For this scenario, GC Tour Guides has decided that one of RPS’s existing DSC partial configurations will work for their needs. If
this was not the case, they could author their own DSC partial configuration and add it to the system.

Before the configuration can be applied, we need to add some information to the database. Figure 4 below displays a partial
section of the entity graph from Figure 1 with supplemental information specific to this DSC example. Two properties –
ComputerName and ConfigurationName – have been added to the Handheld01 Target Item. Additionally, a Resource Group has
been added that defines the configuration applied to the handheld. For more detailed information on how these properties are
connected and what other DSC features are supported by RPS, reference the DSC specific documentation listed in the Supporting
Documentation section of this document.



Executing the Configuration

With the additional supporting DSC elements in place, a Task Item can be generated to execute the RPS Start-Dsc Runbook (which
will apply the DSC configuration) and a Task Assignment to initialize the Runbook.

Executing the Import-TourGuidesGCSampleData.ps1 script with the DscDemo switch will implement the DSC configurations with
the sample dataset.

NOTE

After running the Import-TourGuidesGCSampleData.ps1 script you will be able to view the process of the configuration within the RPS website.
Since the hardware does not exist, it is unreachable, so the Runbook fails and displays the error though the UI.

Content Delivery Network
On Patch Tuesday, the GC guides are leading a group through the Grand Canyon. The GC IT team would like to patch the donkey’s
trackers with security patch X. First, however, they need to use the RPS CDN to distribute the patch from the parent RPS server
stack to the Child RPS server.

To accomplish this goal, they will need to update their database to configure DFS-R to replicate the patch files. For this example,
our script Import-TourGuidesGCSampleData.ps1 script with the CdnDemo switch will handle making the changes for us.

First, the script will create the below directory structure on our DFS-R endpoint in the parent node (the CH server).





| C:\SampleReplication
|        TrackerPatches
|                PatchX
|                        PatchX.smpl

After the directory structure is created the CMDB is used to create the resource item TrackerPatches-PatchX as well as a
replication group for the directory. Once this is completed the CH and Child target items are created or updated with the DfsrPath
properties. Since DFS-R can replicate information to different relevant paths on each endpoint, each target items sets its DfsrPath
that is concatenated with the resource item’s property DfsrContentSubPath. This allows each endpoint to specify its own location
but supports a reasonable usage of relevant paths during automation. An assignment is created between the CH and Child target
items with the DfsReplicationGroup.

In the end the RPS CMDB matches the below.

The DFS management console shows a replication group with two members, CH and Child.

After waiting a few minutes, the CH and Child server should have matching directories.



Sync Service

The GC Tour Guides company would like to administer and monitor patching and weather update tasks from their main office
(HQ). They will use a mobile laptop acting as a full RPS Node to sync with HQ. The RPS Sync Service runs in the background and
synchronizes Target Items, Resources and Tasking data down to a child node and telemetry data back up to the parent node.

In our demo, the RpsChild VM will act as the mobile laptop. We’ll assign Target Items which are part of a guided tour to the Child
Node, and the RPS Sync Service will automatically synchronize the data and related tasks to that node when a connection is
available. We’ll create a TaskMap to simulate update of our weather app and update to the latest weather data.

Run the D emo

Run the Import-TourGuidesGCSampleData.ps1 script on the CH.RPS.local VM with the -SyncDemo switch to demonstrate how the
Sync Service will synchronize automations to a child node and return telemetry data.

Verify Target I tem and Assignments

From the RPS VM, open RPS Web at http://localhost:8080. You should see containers imported from the sample script. Although
it isn’t visible here, the BaseCampLaptop Target Item (TI) is assigned to the Child.RPS.local Node, and all automations will run
there.

The BaseCampLaptop TI is assigned to a Task Map with two sequential steps. Step 1 is an approval step for updating the Weather
App, and Step 2 imports the latest weather data. Click on the BaseCampLaptop link or navigate to Tasking, Assignments to see the
two tasks. Initially, the Status should appear to be NotReady, but after a few minutes, Step 1 will run on the child node.



Open RPS Web on the child VM. Notice that the BaseCampLaptop TI has been synchronized from the parent node, but not the
other items. All the related Tasking and Target data has been synchronized as well.

Step 1 - Approve Weather App Update

The first assignment in our Task Map requires user approval. This approval can be done via RPS Web at the parent or child node.

The first Task Assignment should be in the PendingUserAction status, and you will see a button to show Pending Actions. Click the
Show button to open the approval.

After approval, the Task Assignment status will be completed, and the status will synchronize between child and parent nodes.

Step 2 – Import Weather Data

Step 2 will update to Ready status once Step 1 is complete. Then, the runbook to update the weather data will begin and the
status will change to Running and finally Completed. The sample runbook, Import-WeatherData, will simulate the update by



adding a special property to the BaseCampLaptop TI.

Open RPS Web to verify the Task Assignments are all synchronized. Click the BaseCampLaptop link to view the properties, and
observe the property denoting the weather data version. This property is prefixed with “__SYNC:”, which tells the Sync Service to
synchronize the value back to the parent node.

Additional Scenarios
This sample just uses a simple Target Item and Task Map to illustrate how the Sync Service operates and how automations can be
viewed and controlled remotely. In a more complex scenario, we’d see more Nodes and Containers with many child items
representing physical or virtual devices, and complex task maps that administer patches, collect data, etc. In the GC Tour Guides
example, we could imagine that each guided group has a Laptop which acts as an RPS Node. The physical things, including
donkeys, people, handheld devices and communication equipment may be represented as Target Items in one container.
Headquarters, which acts as the parent RPS Node, would monitor all of the various groups in RPS Web.

Conclusion
RPS is a very customizable solution, which can sometimes be overwhelming. This sample scenario describes a simple
implementation of how RPS can be used to accomplish automation tasks with minimal overhead.

More Resources
RPS Software Design



RPS Install Guide
Last updated on September 14, 2021.

Document Status: Document Feature Complete as of September 14, 2021; PENDING EXTERNAL REVIEW.

Purpose
The purpose of this document is to provide an overview of the Rapid Provisioning System (RPS) Install process and detailed
instructions for setting up a virtualized RPS Environment using Hyper-V.

Audience
This document is intended for Lead Systems Integrators (LSI), Field Service Representatives (FSR), IT staff, and Developers. Users
should have some familiarity with core RPS Concepts as well as basic PowerShell and Windows Systems operations.

System Requirements
1. Windows 10/Server 2016
2. PowerShell/WMF 5.1
3. 16GB RAM
4. 100GB HDD free space
5. Hyper-V PowerShell Module & Management Tools

NOTE

RPS Authored content is signed, but 3rd party code may not be. RPS Installer was tested with PowerShell Execution Policy set to RemoteSigned.

Ports, Protocols, and Service Accounts
RPS specific Port, Protocol, and Service Account information can be found in the Ports, Protocols, & Security Guide.

NOTE

DomainAdmin membership is required to create a new Domain Controller. After initial creation, the account should be removed from
DomainAdmins, but should still retain permissions to manage AD Users, Computers, Groups, and OUs.

RPS Installation (Default)
Installing RPS requires the latest RPS release, the install media for PostgreSQL, Windows features, and a Hyper-V image for the
Windows 2012R2 VMs that will be created. The instructions below can be used to build a default Root RPS Node, which is also a
Domain Controller for the root.local domain and the application server for RPS. You can also choose to create a NOSC Node, TCN
Node, and SNE Node based on available resources.

Media and Content S tore

Before installing RPS, ensure you have gathered all required media from your Distribution Source, LSI, or FSR. Extract and save
the RPS media to a location such as C:\RPS.

NOTE

This location will be referred to as Install Root.









Once you have completed extracting and saving the RPS media, the Install Root folder should contain the following sub-
directories:

\ContentStore
\Certificates
\CMDB
\ConfigurationData
\Demos
\DeploymentShare
\Documents
\DSC
\Export
\GenerateDV
\Images
\iPxeDistro
\Modules
\Office
\Packages
\Patches
\Plugins
\PostgreSQL
\Provisioning
\RpsBitsDownloadService
\RpsCdn
\RpsGui
\RpsProvisioning
\RpsSync
\RpsTaskManagement
\RpsWebApi
\Runbooks
\RvpsGui
\Setup
\SQLSecurity
\SystemTest
\TrustElementRepository
\Utilities
\Windowserver2012

Extract and/or save the Windows Server image to a location other than the previously identified Install Root, such as
C:\WindowsSvr.

I nstall R P S  

The example script is responsible for preparing the PowerShell session so that the Install-RpsNode cmdlet can be executed. The
steps required to complete the preparation can be different from those outlined in the example script. The example script
provided will simply ensure that:

1. All the files in InstallRoot are unblocked so they can be executed

2. That the correct modules can be located and are imported

3. The context has administrative privileges

4. Creates an RPS session in memory and imports all TaskMaps, DscPartials, and Types into the session



5. Generate CMDB data in the RPS Session (in memory)

6. Ensures that the correct parameters are used to execute Install-RpsNode cmdlet

How to Execute I nstall-RpsNode

1. Open PowerShell as administrator. Right-click the PowerShell Icon from Start Menu or Task Bar and select Run as
administrator.

Figure 1: Run PowerShell as administrator

1. Set location to Install Root\ContentStore\ by executing the following cmdlet:

Set-Location c:\RPS\ContentStore\

2. Install RPS and supply the location of the VM Template VHDX, the NodeType and, if needed, specify specific configuration
using -NodeConfigurationName. See examples below:

Install-Rps.ps1 -VMTemplateFilename D:\Common\Windows_Server_2012_R2_VL-dev.vhdx -NodeType 'root'

Install-Rps.ps1 
-VMTemplateFilename D:\Common\Windows_Server_2012_R2_VL-dev.vhdx -NodeType root, nosc -SkipDscModuleCopy -
DeleteVMs

NOTE

For further options, refer to the Install-Rps Parameter Definition table below.

I nstall-Rps Parameter D efin it ions   

PAR AME TER S D ES CR IPTIONS

VMTemplateFilename
(Required) Path to the .vhdx file which will serve as the Hyper-V VHDX template.

RhelTemplateFileName Path to the .vhdx file which will serve as the Hyper-V VHDX template used to create Rhel VMs.





VhdFolderPath Path to a folder to store the .vhdx files used to create VMs. If not specified, .vhdx files will be stored in the same
directory path as specified with VMTemplateFileName.

ConfigFileName Name of file containing the RPS Configuration data. If one is not specified, it will be created in the Export
directory.

NodeType (Required) The desired node you want to install (i.e., Root). If you want to install all nodes then choose 'All'.

SkipVMCreation Switch to use Virtual Machines already created and configured with proper networking.

SkipCopyContent Switch to not copy InstallRoot to the CDN server (i.e., CH).

SkipDSCPrep Switch to not setup DSC MOF Encryption, WinRM HTTPS Listener, and to not copy DSC Resources.

ComputerName Array of the Virtual Machines you want to install from the Node (i.e., Root).

SkipDSCPublish Switch to skip publishing DSC.

CopyCDN Switch to copy patches that were imported into the configuration.

DeleteVMs Switch to delete the Virtual Machines if they exist during a new installation.

SkipDscModuleCopy Switch to not copy DSC Required Modules to the target's PowerShell module path.

Esxi Switch to indicate whether the hypervisor is ESXi (default is Hyper-V).

TaskMapName Name of the desired system task map that will be assigned to the target items. Default value of Install-Rps.

PAR AME TER S D ES CR IPTIONS

Manual Node I nstallat ion/Repair 

1. The Install-RPSNode function from the RPS-Installer module will manually start a install for the Node you specify. See
example bleow:

Enter-RpsSession -Path "D:\Exports\Root.xml"
Install-RpsNode -NodeType "Root"

NOTE

Refer to the parameter table below for available options when manually running the 'Install-RPSNode' function.

PAR AME TER S D ES CR IPTIONS

VMTemplateFilename
(Required) Path to the .vhdx file which will serve as the Hyper-V VHDX template.

RhelTemplateFileName Path to the .vhdx file which will serve as the Hyper-V VHDX template used to create Rhel VMs.

VhdFolderPath Path to a folder to store the .vhdx files used to create VMs. If not specified, .vhdx files will be stored in the same
directory path as specified with VMTemplateFileName.

NodeType (Required) The desired node you want to install (i.e., Root).





SkipVMCreation Switch to use Virtual Machines already created and configured with proper networking.

SkipCopyContent Switch to not copy InstallRoot to the CDN server (i.e., CH).

SkipDSCPrep Switch to not setup DSC MOF Encryption, WinRM HTTPS Listener, and to not copy DSC Resources.

ComputerName Array of the Virtual Machines you want to install from the Node (i.e., @App.Root.local).

SkipDSCPublish Switch to skip publishing DSC.

CopyCDN Switch to copy patches that were imported into the configuration.

DeleteVMs Switch to delete the Virtual Machines if they exist during a new installation.

SkipDscModuleCopy Switch to not copy DSC Required Modules to the target's PowerShell module path.

Esxi Switch to indicate whether the hypervisor is ESXi (default is Hyper-V).

ContentStorePath Path to the content store.

TaskMapName Name of the desired system task map that will be assigned to the target items. Default value of Install-Rps.

PAR AME TER S D ES CR IPTIONS



Ports, Protocols, & Security Guide
Last updated on August 3, 2021.

Last Reviewed and Approved on PENDING REVIEW

Ports and Protocols
RPS uses various ports and protocols for operation. Some ports are configurable as part of the RPS deployment and
configuration, and some are outside the management of RPS and/or not configurable. The table below shows these RPS
components (where * indicates port is configurable via RPS).

COMPONENT D ES CR IPTION POR TS PR OTOCOLS

RPS API Direct management of configuration data in PostgreSQL Server. 5432 TCP

RPS Sync Plugin Synchronize Data and Static Files between RPS Nodes and managed RPS
Targets. 777* HTTPS

DFSR Transfers files between nodes within a domain. 445, 135 RPC, TCP

BITS Transfers files between nodes on different domains. 80, 443 HTTP/S

RPS Web Administrative Website for RPS. 8080* HTTPS

RPS Provisioning
Service Bare-metal/iPXE Service via the specific DNS name rpsprovisioning. 443* HTTPS

TER Reader Trust Element Repository – Reader (DCA) 3443 TCP

TER Writer Trust Element Repository – Writer (DCA) 5443 TCP

WinRM Windows Remote Management 5985/5986 HTTP/HTTPS

SMB File Sharing 445 SMB/HTTPS

ICMP Device Availability ICMP

DHCP Dynamic Host Configuration Protocol 67-69 UDP

DNS Domain Name Server 53 UDP/TCP

Table 1: RPS Ports and Protocols

The Host-Based Security System (HBSS) uses some common ports (e.g., ports 80, 443, 1433, etc.), though it requires additional
ports be used for full operation. Please see the HBSS documentation, at https://kc.mcafee.com/corporate/index?
page=content&id=KB66797.

Service Accounts
The following RPS accounts are used by RPS for the setup and maintenance of RPS nodes.

R P S  Account Roles:  D omain Accounts    



ACCOU NT (R OLE) D ES CR IPTION PER MIS S IONS

DomainAdmin Has full control of the domain. Administrator rights on all domain
controllers and member servers. AD: Domain Admin¹

DomainJoinAdmin Used to join computers to the domain. Rights are scoped
specifically for that purpose.

AD: Force change password
Read/Write Computers

ProvisioningServiceAccount Provisioning Website App Pool Identity SQL: Service Permissions²

GuiServiceAccount RPS Website App Pool Identity AD: Domain Admin¹ 
RPS: Master Key Encryption

SqlServiceAccount SQL Server Service AD: Log on as a Service

CdnServiceAccount Has Access to the CDN folder. CDN Folder, BITS Message
Queue

DFSAdmin Has minimum required permissions in Active Directory to manage
DFSR. AD: DFSR Management

MasterKeyEncryption Users with this role will be granted read permissions to the
MasterKey certificate private key. Read Only

PluginClientAuth Users with this role will get the RPS Web API client authentication
certificates installed in their certificate store.

WebApiServiceAccount Account used to run the Web API service and Sync. AD: Domain Admin¹ 
SQL: Service Permissions²

FileTransferServiceAccount Account used to transfer files from ContentStore. ContentStore NTFS
permissions

DhcpServiceAccount Account used to authorize DHCP. DHCP Admin

DomainSchemaAdmin Account used to extent the AD Schema and move domain
controllers to different AD site.

AD: Schema Administrator,
Domain Admin¹

DomainUser Account used to export certificates from Root and CA local
machine certificate store (ClientPki.ps1). Logon Permissions

TaskManagementServiceAccount Domain level service account authorized to execute runbooks
across the RPS domain. AD: Domain Admin¹

ServerAdmin Push certificates and settings; manage DSC configuration; pull files
from content store. AD: Domain Admin¹

Table 2: Domain Accounts

¹ Domain Administrator membership is required to create a new Domain Controller. After initial creation, the account should be
removed from this group, but should still retain permissions to manage AD Users, Computers, Groups, and OUs.

² Service SQL permissions are scoped to the RpsDb only and include Execute, Select, Insert, Update, Delete, and SyncHistory
change tracking view permissions.

R P S  Account Roles:  Server Accounts   



ACCOU NT (R OLE) D ES CR IPTION PER MIS S IONS

LocalAdmin Manage machine settings for non-domain joined computer. Local Admin

FileTransferServiceAccount Account used to transfer files from ContentStore. ContentStore NTFS permissions

VMWareAdmin Account used for VMWare configuration. VMWare Administrator

LocalAdminProvisioningOnly Local Admin account, but only used for provisioning. Local Admin

Table 3: Server Accounts

R P S  Account Roles:  Other   

ACCOU NT (R OLE) D ES CR IPTION PER MIS S IONS

PostgreSqlSuperAccount PostgreSQL administrative account. SQL

DatabaseAccount PostgreSQL account used by RPS to connect to the database. SQL

DomainSafeModeAdmin Account that credentials are used to create the Domain Controller DSRM password; only
used in ADSitesAndSubnets.

Table 4: Other Accounts

Security
Par t ial Configurations 

All RPS partial configurations must define the following parameters:

IPAddress - Accessible IP Address of the computer we will publish DSC Configuration to.
DSCEncryptionCertificate - Information about the certificate used to encrypt the MOF (configuration). The LCM is set to
use this certificate and any partials that are not secured will not run on a target.
OutputPath - Location to temporarily store the MOF file once it is compiled.

For additional information, refer to the RPS article Authoring RPS DSC Partial Configurations.

R P S  Runbooks  

Many RPS PowerShell runbooks will need to connect to the Target (Computer) to perform their duty. To connect, you must get
the appropriate credential and then establish a secure connection.

Runbooks use the Get-RpsCredential  or Get-AdminRoleCredential  cmdlet to load the right credential for the target, then uses 
New-SecureSession  from Rps-Api to make the connection.

For additional information, refer to the RPS article Authoring RPS Runbooks.

Patching

Patch Management in RPS requires communication via HTTPS. The certificate authority (CA) that signed the web server's
certificate must be trusted by the Linux client or patches will not be downloaded. This is done by installing the public certificate of
the CA.

For additional information, refer to RPS Patching.

Cer tificates 



The RPS Solution uses certificates for a variety of functions, including:

Website SSL binding for HTTPS encrypted transport between server (e.g., RPS Website) and client.
RPS Sync Service for client/server authentication between subscriber (e.g., RPS Sync Service on Region) and distributor
(e.g., RPS Sync Service on Master) nodes. The certificate thumbprints for all trusted nodes are whitelisted in the RPS CMDB.
RPS Sync Service for HTTPS encrypted transport between server and client.
DSC MOF file credentials encryption (by default, DSC encrypts the entire MOF file).
Client Authentication for the DSC Pull Server.
WinRM for HTTPS encrypted transport between server and client.
SQL for HTTPS encrypted transport between server and client.
Provisioning SSL binding for HTTPS encrypted transport between server (e.g., RPS Provisioning) and client.
Encryption of secrets in the database (protected properties).
Encryption of XML configurations.

Each certificate must be derived from a trusted root certificate that resides in the Trusted Root Certification Authorities store in
Certificate Manager on the RPS server(s).

R OLE D IS TR IB U TION K EY U S AG ES PU R POS E

DscEncryption Per VM Key Encipherment, Data Encipherment (30) MOF credential encryption.

DscPullServer Per VM DigitalSignature, Client Authentication DSC Pull Server Client Authentication

ProvisioningSSL APP Master Key Encipherment, Data Encipherment HTTPS support for Provisioning Website.

RpsClientCdn Per VM Client Authentication Patching Certificate Authentications.

RpsGuiSSL Per APP VM Digital Signature, Non-Repudiation, Key
Encipherment (e0) HTTPS support for RPS GUI Website.

iPxeSSL Per APP VM Digital Signature, Non-Repudiation, Key
Encipherment (e0) HTTPS support for iPXE Website.

MasterKeyEncryption Per Node Document Encryption, Key Encipherment, Data
Encipherment Protecting the Master Key.

NodeEncryption Per APP VM Document Encryption, Key Encipherment, Data
Encipherment Encrypting node configuration.

RpsRoot Per VM Certificate Signing, Off-line CRL Signing, CRL
Signing (06) Deriving other certificates.

RpsSync Per APP VM Client Authentication Allowing Sync to occur between nodes.

RpsSyncSSL Per APP VM Key Encipherment, Digital Signature, Non-
Repudiation Data-in-transit encryption for node sync.

SqlSSL Per APP VM Server Authentication Data-in-transit encryption for SQL data.

WinRM Per VM Server Authentication, Key Encipherment Secure Connections to Targets.

CertificateApi Per VM Client Authentication Certificate Manager API REST Certificate
Client Authentication.



CertificateManager Per VM Client Authentication Certificate API REST Certificate Client
Authentication.

RpsAPi Per VM Client Authentication RPS API REST Certificate Client
Authentication.

RpsWebAPiSSL Per APP VM Digital Signature, Non-Repudiation, Key
Encipherment (e0) HTTPS Support for RPS Web API Host.

WindowActivation All Digital Signature CA Chain to Activate Office and Windows.

WindowsActivationCA All Digital Signature, Certificate Signing, Offline
CRL Signing, CRL Signing CA Chain to Activate Office and Windows.

R OLE D IS TR IB U TION K EY U S AG ES PU R POS E

Table 5: Certificates

Master Key

The Master Key (MK) is used to protect secrets in the database (i.e., credential/certificate passwords). Since the MK is high value, it
is encrypted using the public key of a certificate. Appropriate users are given access to the private key of the Master Key
Encryption Certificate (MKEC) so that they may access the MK and decrypt protected properties in the database.

The same MK should be used for all nodes that will share secrets. The default boundary for secrets is an Active Directory domain
since domain accounts will likely need access to all domain computers. This implementation is fungible; however, any changes to
the default implementation made by the customer/integrator may risk customer data.

Accounts that are preconfigured with the MasterKeyEncryption role during setup will have permissions to manipulate protected
properties in the target environment. In order to give this permission to new users once RPS is installed, the role should be added
to the appropriate account in the CMDB and DSC should be republished (at minimum, the RpsCertificate partial).

When a protected property is retrieved or set, access is determined by retrieving the MasterKeyCertThumbprint property on the
node. If the user has access to the corresponding certificate private key in the LocalMachine\My store, they are granted access to
the MK. If the user does not have rights to the MKEC, access to protected properties will be denied.



PostgreSQL
Last updated on February 16, 2021.

Last Reviewed and Approved on PENDING REVIEW

We are utilizing PostgreSQL 12.4 to maintain compatibility with Windows Server 2012 R2.

NOTE

External connectivity is authorized through a firewall rule that allows inbound TCP connections to Port 5432. See Ports, Protocols, & Security
Guide for more details.

PostgreSQL 12 Documentation
Official PostgreSQL Documentation:

https://www.postgresql.org/docs/12/index.html

Accessing the Server
Once installed, PostgreSQL can be accessed by running pgAdmin on any of the following supported browsers:

Edge
Firefox
Chrome

WARNING

Internet Explorer is not supported.

pgAdmin 4 is bundled with the PostgreSQL installation package.

pgAdmin 4 Documentation
Official pgAdmin Documentation:

https://www.pgadmin.org/docs/pgadmin4/4.24/index.html







Guidance for Pull Requests into the COMMON Repository
Last updated on December 11, 2020.

Last Reviewed and Approved on PENDING REVIEW

Introduction
Pull Requests (PR) allow a developer the opportunity to have multiple sets of eyes on their code in a collaborative space. This
helps to ensure the best possible code is deployed into the live environment. These instructions provide guidance on how to
submit a Pull Request in the RPS Common Repository (Repo).

Assumptions

1. You have access to the Mission Network RPS Azure DevOps instance at www.devops.peoc3t.com.
2. You are submitting a PR to the COMMON repo NOT the Core Repo.
3. You are using and familiar with Visual Studio to create/edit/submit code changes. Pull Request Etiquette

P ull Request E t iquette  

S izing

• Simplify the amount of changes in your pull request. A large pull request (>100 lines of code changed) usually indicates that the
user story was not properly decomposed. o Smaller PRs allow for quicker reviews and subsequent merges to the default branch,
leading to increased work velocity o Smaller PRs allow for quicker defect identification and mitigation, since the scope of changes
are much more discrete

Naming

• Provide meaningful descriptions for every commit. This assists PR reviewers to better understand the context of code changes
and for version history o For some great guidance, see: https://chris.beams.io/posts/git-commit/

E xp e c t a t i o n s         

• Be polite. Conversations should occur as they would if you were in person. • This is a team environment and success is
dependent upon being accountable to each other. If you are assigned a PR, do your best to perform the review in a timely
manner. If a blocker exists, let your scrum master, project manager or PR creator know as soon as possible. • When making a
comment as a PR reviewer, take the time to make a recommendation. This will help others grow and potentially avoid the same
mistake in the future.

Culture

• Code reviews are a safe place and meant to be a tool for communication. • Review the code, not the person. As a reviewer, be
aware that your sole job is to review the changes, not make assumptions about someone’s personality. • On the flip side, as the
owner of the code review understand that any feedback you are getting should not be considered a personal attack on you. It is
merely a review of the code. • Leave the communication channel open for discussion as long as needed. Marking comments
resolved without a chance for the commenter or owner to reply closes that channel prematurely when it could’ve otherwise
provided more valuable conversation.

PR Process



Note: It is critical to ensure you are working in the Common repo in ADO and the Common folder in Visual Studio. 

B ranch C reation 

Before you begin development, a branch should be created for the work in Visual Studio.

B ranch Naming

All branch names for Backlog Item-level work should:

1. Start with "feature/"
2. Followed by the TFS alias of the developer submitting the PR and a hyphen
3. Followed by the backlog item number surrounded by hyphens (see example below)
4. Followed by a short (2-3 word) description of the work
5. Output: feature/jskerrett-23456-WriteDocumentation

Creating the B ranch

Take the following steps in Visual Studio:

1. Open Team Explorer
2. From the Team Explorer Home page, select Branches 



3. Click on New Branch 
4. Type the name of the PR



5. Click on Create Branch 

P ull Request C reation 

Once your development changes are finished, a pull request should be created to begin the process of merging the proposed
changes to the default (‘develop’) branch. The high level process begins at the PEOC3T ADO site and ends with a pull request

generated. 

1. To begin creating a Pull requests in Azure DevOps, Navigate to https://www.devops.peoc3t.com 



2. Click on the Pull requests Menu item in the left menu bar
3. Click New pull request button in the top right corner of the screen 

4. Click the Select a source branch… dropdown list
5. Select the branch to be merged.



6. Fill in the required fields: a. Descriptive title b. Fill out the Description field c. Ensure a work item is linked to the PR by
selecting the appropriate backlog item from the ‘Work Items’ dropdown list d. Click the Create button at the bottom of the
New Pull Request Form 



7. Pull Request Has now been created

PR Approval
Approval Requirements

The following criteria must be met before a PR can be completed and merged to the default branch:

PR must be approved by 2 required approvers
For COMMON repository, the required approvers are limited to the MCS ‘Required Approvers’ group
Other approvals on the PR are recommended, as more eyes on code changes not only increase confidence in the
change, but also increase awareness of changes to the codebase



PR cannot be approved with a blocking approver
Reviewers cannot approve their own changes
A work item (backlog item or bug) must be linked to the PR

This creates historical context for code changes

All comments must be resolved
CI Builds must all pass

PowerShell Unit tests
PowerShell Meta tests
DSC Modules tests

Currently, all GD users will have access to view and approve PRs into the COMMON repository.

Note: If the PR has passed the Policy requirement, a green check mark will show beside it. If the PR has not passed the policy
requirement, then a red X will show beside it.



Completing the P R  - D efin it ion of D one     

For a Work Item (at the Product Backlog Item or Bug level) to be considered done, the following must be addressed as part of the
Pull Request:

The latest updates from ‘develop’ are merged into the working "feature" branch prior to PR creation
Altered code meets Style Guidelines
Unit and/or Integration Test(s) implemented and/or updated
All tests are run locally and pass
For non-trivial updates, a lab is deployed locally to ensure there are no breaking changes. RPS functionality is verified.
All Work Item Acceptance Criteria met or discussed in work item (and tagged Dev Lead/Product Owner)
(Runbooks) Test Runbook within TMS from either TaskMap or Schedule
(Runbooks) Has standardized input (TaskAssignmentId), Target loading
DSC Resource updates are documented and communicated
Applicable documentation updated/created
OSS Registrations created for any new Open Source software/version

If new / updated 3rd Party / OSS, update the file at $/Documents/ThirdPartyNotices.txt

Update Release Notes, as appropriate, with each PR
Product Backlog Item/Bug moved to Done state when PR is Approved and Completed



RPS Software Design
Last updated on January 13, 2021.

Last Reviewed and Approved on PENDING REVIEW

Introduction
The Rapid Provisioning System (RPS) is designed to provide a mobile, modular, and extensible framework that allows coded
automation activities to be executed across a wide area network environment with limited connectivity and bandwidth. This
solution was designed to survive the inherent constraints and challenges that have been observed within a mobile tactical
network. RPS is designed to be a flexible solution for programs with similar constraints and automation requirements. This
document will outline the technology, approach, and functionality provided by this solution.

B asic R P S  D efin it ions      

This section provides the definition for terms that are used throughout this document. Refer to this section for how these terms
are being used within the RPS system.

TER M D EFINIT ION

Cmdlet A lightweight command that is used in the Windows PowerShell environment

Configuration Item (CI) A vehicle that contains entity definitions

DSC Microsoft’s PowerShell Desired State Configuration software package

RPS Node A running instance of the RPS system

Constraints and Challenges of a Tactical Environment

There are many constraints and challenges inherent to a mobile tactical network:

Network capability is limited to modern satellite and line-of-sight (LOS).
Vehicles don't always have network connectivity for extended periods of time. This period can range from a few days to
several weeks.
When a satellite connection is available, vehicles experience extremely high latency combined with extremely low
throughput.

Line-of-sight (LOS) provides an improvement in the network capabilities of the vehicle but has limited accessibility when
vehicles are on the move (OTM).

Immediate response capabilities for combat situations:

RPS is designed as a combat-ready system to support the warfighter in the field.
Service downtime must be schedulable and interruptible.

Long lead times to field changes:

Time for changes to hardware and software takes years to progress from adoption to operating in a fielded solution.
Fielded solutions often have a long lifespan due to costs associated with high cost to upgrade and difficulty
implementing changes to the field.
The RPS solution will be designed to use the latest commercial off the shelf (COTS) solutions to provide for the
longest possible lifespans.

D esign G oals 



The RPS toolset is designed to provide the following functionality to meet the requirements of the tactical Environment:

Targeted automation across various device types (routers, switches, radios, servers, etc.).
Codependency on automation tasks (To accommodate cross-device requirements and prerequisites).
A componentized automation model to simplify development of automation tasks.
An extensible toolset to meet automation needs to accommodate environmental variances.
Offline automation capabilities, specifically the ability to discretely operate with limited or no connectivity to upper-tier
systems.
Low-compute capabilities for executing on low resource systems.

Architectural Overview
The RPS system is designed to provide the infrastructure upon which various PORs can extend to automate tasks specific to their
missions and deployments.

R P S  Functionality  

The common set of functionalities provided by RPS is shown below.

1. User interface to manage task assignments and executions – Provides the ability for a user to manage the
provisioning process at a granular level. The user can start, halt, and return feedback on provisioning processes for a specific
target item.

2. Coordinated Automation – Provides the ability to automate and coordinate a variety of tasks.
3. Content Synchronization – Provides the ability to synchronize content across RPS nodes to support the tasks being

automated.
4. Interface to Services & Data – Provides a standard interface to access RPS services through a well-documented API.
5. Telemetry Services – Provides the ability to collect heuristic information from a system.
6. IP Spreadsheet Capabilities – Provides the ability to read in the standard TNACC/TNIC provided IP spreadsheet and

deliver expected results.

R P S  Components  

COMPONENT
COR E
TECHNOLOG Y D ES CR IPTION FU NCTIONALIT Y MAPPING

Application
Server IIS Provides the capability to host a web application. UI

Configuration
Management DSC

Underlying configuration management framework to
specify, setup and maintain a desired machine
configuration.

Coordinated Automation Content
Synchronization Interface to Services and
Data UI

Content
Delivery BITS, DFSR Underlying content delivery framework to replicate and

deliver content across the network. Content Synchronization



Core
Modules

C#,
PowerShell

RPS specific implementation to provide a generic capability
to perform task automation. This includes all the RPS
runbooks, modules and capabilities that are exposed via
the RPS API.

Coordinated Automation, Content
Synchronization, Interface to Services
and Data, Telemetry Services, IP
Spreadsheet Capabilities

Data
Persistence

PostgreSQL
Server

Underlying data storage that maintains the metadata
needed by the system to manage the task automation.
Commonly referred to as RPS CMDB.

Coordinated Automation

Messaging
Service C# Underlying messaging framework to provide command

and control communication capability between RPS nodes. Content Synchronization

RPS Web
Application

.ASP.NET
MVC, IIS,
jQuery,
Knockout, C#

RPS specific user interface to allow a user to initiate
automated tasks on target systems. UI

Task
Management
Service (TMS)

Windows
Service / RPS
Phyr

Automated Task Management service used to process RPS
Task Assignments. Coordinated Automation

COMPONENT
COR E
TECHNOLOG Y D ES CR IPTION FU NCTIONALIT Y MAPPING

NOTE

Refer to each component’s individual documentation for more details on the internals of each component.

D ata Persistence (C MD B )   

The detailed software design documentation for this component is available at:

RPS > Documents > Operations > RPS Data Persistence (CMDB) Design.docx

Automation Framework

The detailed software design documentation for this component is available at:

RPS > Documents > Operations > RPS Automations Package Guidelines.docx

Configuration Management

The detailed software design documentation for this component is available at:

RPS > Documents > Operations > RPS Configuration Management (DSC) Design.docx

Content D elivery

The detailed software design documentation for this component is available at:

RPS > Documents > Operations > RPS Content Management.docx

Messaging Service

The detailed software design documentation for this component is available at:

RPS > Documents > Development > RPS Sync Services.docx

Application Server

The application server provides the ability to host a web application. RPS uses Microsoft’s IIS web server to provide this capability.





R P S  Web Application  

The detailed software design documentation for this component is available at:

RPS > Documents > Software > TODO

Software D evelopment Kit ( S D K)   

The RPS SDK provides the developer-oriented documentation for the RPS system. It will include:

RPS binary code
Sample PowerShell source code runbooks
RPS > Documents > Samples
API and cmdlet documentation
RPS > Documents > Development > RPS API Documentation.PDF

RPS Server Architecture
The RPS server architecture is intended to provide scalability for most automation requirements. To accommodate this, each RPS
node will be able to either operate on its own or receive instructions from another RPS node. Those instructions will provide
operations information to the RPS solution to request executions of automation code, or to manage its own environment.

Software Requirements

The RPS infrastructure requires the following software:

A Microsoft Windows operating system (Windows Server 2012 R2 or greater)
The core operating system version the solution will run on.

RPS API
Provides the .NET and PowerShell modules necessary to access, manage and maintain a RPS Node.

PostgreSQL database
Provides the underlying PostgreSQL database support for the custom Configuration Management Database (CMDB)

Task Management Service (TMS)
RPS Task Management

.NET Framework 5
Provides enhanced PowerShell frameworks and support for advanced automation.

Windows Management Framework (WMF) 5.1
Extends PowerShell support to enhance Desired State Configuration functionality.

Microsoft Distributed File System Replication services (DFSR).
Background Intelligent Transfer Service (BITS)
Software for maintaining content distribution over slow, unstable WAN links.
RPS Sync Service

Provides Windows service to synchronize RPS nodes.

Server Role Min imum Requirements

R OLE CPU  COR ES HAR D  D IS K  (G B ) R AM (G B )

CDN 2 100 (Depends on content) 4

GUI 2 50 4



PostgreSQL 2 10 2

R OLE CPU  COR ES HAR D  D IS K  (G B ) R AM (G B )

Server Architecture

It is important to note that the server layout of the RPS components is designed to be fluid based on requirements. This section
will outline the software components of the RPS architecture and how they interact, rather than the server architecture of a
specific implementation.

The software components of a given node can be placed on any server layout provided network communications and software
prerequisites are available. Each collection of RPS components is identified as a “RPS Node”. These nodes are intended to operate
both individually, and in a distributed workload capacity. Node layouts will vary based upon the requirements of a given
implementation. For example:

Single server RPS node (all software on one system)
Multi-server RPS node (each component on its own instance of Windows across multiple servers)

RPS API - PowerShell Module and Data Access
The RPS API is a single library to be used in conjunction with the RPS CMDB. The API provides .NET and PowerShell interfaces for
managing and manipulating RPS data and actions.

PowerShell and AP I  Functionality 

Table 2 outlines the available actions the RPS API and PowerShell module offers to support and maintain the RPS environment.

HIG H LEVEL ACTIONS PU R POS E

Managing RPS
Infrastructure Data Actions such as registering and managing RPS nodes and their relationships to each other.

Managing Resource
Assignments Manage Assignments between Resource Items and Target Items.

Managing Resource
Items Manage resources, their properties, and metadata.

Managing Target
Items Manage Target Items, properties, their relationship to other items, and other item related metadata.

Managing Tasks Provides the commands necessary to manage and register tasks.

Managing Task
Assignments Manage Assignments between Tasks/Task Maps and Target Items.

Managing Task Maps Manage Task Maps and their definitions, what tasks to run, what their dependencies are, filtering criteria, etc.

Misc. Toolset
Functionality

Actions such as resets, initiating Task Map evaluations, setting requests for user-interaction, or other functions
that may not necessarily directly relate to CMDB data.

More Resources
RPS Data Persistence (CMDB) Software Design
RPS Configuration Management (DSC) Software Design



RPS Configuration Management (DSC) Software Design
Last updated on January 13, 2021.

Last Reviewed and Approved on PENDING REVIEW

This guide shows the underlying RPS framework to specify, setup and maintain a desired machine configuration for the Windows
computers, including RPS itself, through the RPS API and Desired State Configuration (DSC).

Configuration Management using DSC
PowerShell Desired State Configuration (DSC) is a built-in capability of most Windows devices used to manage discrete
configuration of a device or system. Additionally, it has direct support for Linux systems and non-OS devices by proxy of a
Windows Device (e.g. Routers).

RPS facilitates a process in which DSC configurations can be correlated to devices. This allows for the management of
configurable devices in a consistent manner.

This section will outline the suggested structure for authoring DSC configurations.

TER M D EFINIT ION

RPS Node A running instance of the RPS system.

DSC Microsoft PowerShell Desired State Configuration.

D S C Par t ial Configurations   

DSC allows for configurations to be structured as Partial Configurations which represent small configurations for individual
pieces of configuration data. By authoring DSC configurations for delivery in RPS into smaller Partial configurations, they can be
pieced together and rearranged in new ways for delivery in multiple configuration sets. This modular approach greatly improves
the reusability of individual configurations.

The following link provides additional information on DSC Partial Configurations: https://docs.microsoft.com/en-
us/powershell/scripting/dsc/pull-server/partialconfigs?view=powershell-7.1

D S C Resources 

If a DSC partial configuration contains the information of what the configuration will be, a DSC resource contains the information
of how the configuration is set. RPS uses DSC resources from the open-source community and the RPS team itself.

NOTE

The RPS documentation includes information on authoring or adding new DSC resources to the solution. This documentation can be found at
$/Documents/Operations/Authoring DSC Resources.docx.

The R P S  D S C S tructure     

The RPS API structure used by DSC is shown below in a distilled format. This structure allows us to develop generic DSC partial
configurations that can be combined in many ways using resource groups and applied to any number of target items.





Each target item configured by DSC is required to be of type VirtualMachine. The property ConfigurationName is used to
associate the target item with a resource group by the same name. Resource items within the group are the DSC partial
configurations applied to the target item when Start-Dsc or Start-DscOffline is called. The property ComputerName is used by the
DSC push process described below to connect to the target machine.

The resource group of type DscConfigurationGroup is used to group multiple partial configurations into groups for application to
target items. This group type has a single optional property named Dependency. This is a semi-colon separated set of comma
separated pairs naming the dependencies between DSC partial configurations.

For example, if the dependency property is “Certificate,OSCore;SQL,OSCore” a dependency for both the Certificate and SQL
partial would be set on the OSCore partial.

The resource items of type DscPartial represent individual DSC partial configurations. Two of the properties,
PartialConfigurationName and Path, are required with Resources being optional. Any resources used by the DSC partial listed as a
comma separated list within the Resources property will be copied to the target item computer by the Start-Dsc Runbook or the
Start-DscOffline script.

Finally, the resource item of type DscResource represents the DSC resources used by the partial configurations. Only the Path
property is required.

Nearly all the DSC partial configurations have specific required parameters. Each of these expected parameters should be a
property on all the target items using the partial configuration.

Start-Dsc and Start-DscOffline will use the properties on the target item as the parameters for call the DSC partial configurations.
If the target item is missing a required property, the scripts will check higher memory scopes (This allows for temporary
development environments with modified settings). If no property or variable is found matching all required parameters an
exception will be thrown.

Compiling and Pushing Partial Configurations
When utilizing the DSC solution described in this document, there is a difference between how these DSC configurations can be
used in an offline (RPS is not yet installed) scenario versus an “Online” (RPS is present) scenario.

The reason for this is, the same process used by RPS to push and configure DSC routines is the same process used to install RPS.



By building the system this way it creates a circular flow that is self-supporting. This section will describe the differences between
the online and offline implementations of RPS pushing DSC configurations. Simply put, the differences in functionality reside
simply in where configuration data is sourced from.

Online

The “Online” version of pushing DSC with RPS consists of a series of Powershell runbooks (workflows) authored as Task Items in
RPS. These runbooks are:

Start-Dsc
Test-Dsc

When Start-DSC is assigned to a TargetItem through the normal processes of RPS, the configurations are pulled and compiled as
described previously in this document . By creating those groups of partials, the system can pair up TargetItem property data with
required parameters from the database directly and execute the DSC push. The location in which the push is targeted is defined
by the TargetItem referenced.

Currently, each targeted item used in this process must have a ComputerName property with appropriate data to supply
connectivity information (such as an IP address, or host name).

In this mode, the data is sourced straight from the RPS Node CMDB database that is pushing the Start-DSC Task as an executed
item.

The Test-Dsc Runbook is used to provide information on the current state of the DSC configuration on the target computer.

Offline

The “Offline” version of pushing DSC with RPS consists of a series of scripts that execute in the same manner described in the
Online mode, however they source their data from local files. The scripts in this use case are:

Start-DSCOffline
Invoke-RpsInitialization

The XML files supplied to this process are serialized using the built in RPS Commands for serialization. These XML files are created
using another existing RPS installation or using the Rps-ApiMock module.

A series of XML files must be exported to support an Offline DSC operation. They must include all required data by the RPS DSC
Process including:

ResourceItem data
ResourceGroup data
TargetItem data

By exporting this data into XML files, Start-DSCOffline can parse them and utilize the information to execute the same way the
Online use case is executed.

Invoke-RpsInitialization provides a wrapper mechanism to ensure proper files, supporting content, and metadata is present at
appropriate locations before DSC Scripts are applied and begin executing the configuration process.

Building the processes this way enables RPS to self-replicate new copies to new servers, which can also maintain their own health,
self-recovery and report the state of configuration.

The offline initialization process supports XML files encrypted with the Rps-Encryption module as well as plain text files.

More Resources
RPS Software Design
RPS Data Persistence (CMDB) Software Design



RPS Data Persistence (CMDB) Software Design
Last updated on March 24, 2021.

Last Reviewed and Approved on PENDING REVIEW

The data persistence feature of the Rapid Provisioning System (RPS) provides the underlying data storage needs of the system.
The RPS Configuration Management Database (CMDB) maintains the metadata that is needed by RPS to targetable containers of
items, the resources to be applied to those items, tasks and task maps for orchestrating task execution on those items, and the
node hierarchy in which these items reside.

The figure below shows a high-level relationship of how these meta-data types interact for the purposes of automations.

RPS CMDB – ER Database Diagram
The detailed entity relationship diagram documentation for the RPS CMDB is available at: RPS > Trunk > Documents >
Architecture > RPSEntityRelationshipDiagram.vsd

NOTE

This document is intended to outline the physical database layout.

TER M D EFINIT ION

Automation A single automated task that is executed by the RPS system.

CMDB Configuration Management Database (custom for RPS).

DSC Microsoft PowerShell Desired State Configuration software package.

Device Any computer, router or other networked device which can be targeted by an automated risk.

Node A running instance of the RPS system.

RPS Rapid Provisioning System.





Resource Any item of resource that can be applied to a target through a running task.

Target Any container or item on a container that can be directly targeted for task execution by RPS.

Task Any workflow/runbook that can be executed on a target by RPS.

TMS Task Management Service - hosts & runs runbooks, used by RPS.

TER M D EFINIT ION

Metadata Storage – RPS Tables
This section will describe the tables needed to persist data for the RPS API. This document will further describe how each table is
related and leveraged by the RPS API.

RPS coordinates automations by leveraging the CMDB for target, task, resource, and node configuration metadata. This data
represents the containers/items to target, resources to assign, tasks to assign, orchestrate & automate, and hierarchal nodes to
locate and synchronize. This data is all stored in a very generic format to offer maximum flexibility and extensibility for any user of
the solution. Breaking down data into a generic data model allows for any type of target, resource, and task information to be
stored and utilized within the RPS Database for coordinated automation and synchronization. The table below briefly describes
the current tables represented within the RPS CMDB:

D ATA T YPE FU NCTION

Container A Container is metadata about a TargetItem that is a top-level parent of a set of target Items. Task maps
are only assigned to target items that are containers.

ItemProperty
An ItemProperty is a key/value property bag item that contains all custom metadata for an RPS item
allowing for extensibility. The ItemProperty table is used by TargetItem, TargetGroup, ResourceItem,
ResourceGroup, Node, TaskItem, TaskAssignment, and ResourceAssignmentStatus.

LocalConfig A LocalConfig is metadata about a local RPS instance. An example is the identification of the local RPS
node.

Node A Node is metadata about an identifiable location that is a running instance of RPS. Nodes can have
parent/child relationships. Changed data is synchronized between related nodes.

ResourceAssignmentStatus A ResourceAssignmentStatus is metadata about a resource assignment to a targetable item and its
current state. Resource assignments are defined and managed by individual tasks (workflows).

ResourceGroup A ResourceGroup is metadata about a logical grouping of resource items. A ResourceGroup has a set of
ResourceItem members to simplify resource management and assignments.

ResourceItem
A ResourceItem is metadata about a resource item that is not an executable task. A resource item is either
a local or global item of resource that is applied to a targetable item by a task workflow/runbook. An
example of a resource item is an operating system patch or a configuration template.

TargetGroup A TargetGroup is metadata about a logical grouping of target items. A TargetGroup has a set of
TargetItem members to simplify task/resource assignments.

TargetItem

A TargetItem is metadata about a device item or container. Target items can have parent/child
relationships. A top-level target item is called a ‘Container’ since it always contains a set of targetable
items. Target items can have tasks assigned to be executed on them via automation. Target items can
have resources assigned to be applied to them. An example of a target item is a router or a switch.



TaskAssignment

A TaskAssignment is metadata about a task assignment to a targetable item and its current state. Task
assignments are sometimes direct assignments of a task to a target item. Task assignments are also
generated through assignments of a task map to a container. TMS uses task assignment state to control
automation.

TaskAssignmentDependency

A TaskAssignmentDependency is metadata about a task assignment dependency. Each instance defines
the parent/child dependency between two task assignments. These dependencies are generated from task
map definition dependencies during a task map assignment to a target. These dependencies are used by
TMS to control task execution order during automation.

TaskAssignmentUserAction A TaskAssignmentUserAction is metadata about a user action associated with a task assignment when
task assignment state is ‘PendingUserAction’.

TaskItem A Task is metadata about a task workflow. A task is a workflow that is executed by TMS. Tasks are
assigned to target items directly or through task maps for coordinating task execution on target items.

TaskMap Identifies a set of steps, what order they should be performed in, and what target items those steps apply
to.

TaskMapAssignment A TaskMapAssignment is metadata about a task map assignment to a target. A task map assignment
contains information about the assignment of a task map to a target item or group of target items.

TaskMapDefinition A TaskMapDefinition is metadata about a task map definition. A task map definition defines which task
item is assigned to which target item. An optional property bag filter can be associated.

TaskMapDefDependency
A TaskMapDefDependency is metadata about a task map definition dependency. Each instance defines
the parent/child dependency between two task map definitions. These dependencies are used by TMS to
control task execution order during automation.

TaskMapDefFilter
A TaskMapDefFilter is metadata about a task map definition filter. A filter is used to further define which
target items a task item is being assigned to by specifying which property bag key/value pairs are present
on a target item.

TaskState A TaskState is an enumeration of task states used for task assignments by the TMS controller.

D ATA T YPE FU NCTION

RPS CMDB Relationships
The detailed design diagram for database entity relationships (ER) on how database entities are related to each other can be
found here: RPS > Trunk > Documents > Architecture > RPSEntityRelationshipDiagram.vsd

The CMDB database tables have the following cardinality in relation to other tables:

A Node can have zero-or-more child Nodes, and zero-or-one parent Node.
A Node can contain zero-or-more TargetItems.
A Node can contain zero-or-more local ResourceItems.
A Node can have zero-or-more ItemProperties.
A LocalConfig can reference one local Node.
A TargetItem can have zero-or-more child TargetItems, and zero-to-one parent TargetItems.
A TargetItem can have zero-or-more ItemProperties.
A TargetItem can belong to one Node.
A TargetItem can belong to zero-or-more TargetGroups.
A TargetItem can belong to zero-or-more ResourceAssignments.
A TargetItem can belong to zero-or-more TaskAssignments.



A TargetGroup can have zero-or-more TargetItems.
A TargetGroup can have zero-or-more ItemProperties.
A ResourceItem can have zero-or-more child ResourceItems, and zero-or-one parent ResourceItem.
A ResourceItem can belong to one local Node or be global.
A ResourceItem can have zero-or-more ItemProperties.
A ResourceItem can belong to zero-or-more ResourceGroups.
A ResourceItem can belong to zero-or-more ResourceAssignments.
A ResourceGroup can have zero-or-more ResourceItems.
A ResourceGroup can have zero-or-more ItemProperties.
A ResourceAssignmentStatus can reference one ResourceItem.
A ResourceAssignmentStatus can reference one TargetItem.
A ResourceAssignmentStatus can have zero-or-more ItemProperties.
A TaskItem can belong to zero-or-more TaskMapDefinitions.
A TaskItem can belong to zero-or-more TaskAssignments.
A TaskItem can have zero-or-more ItemProperties.
A TaskMap can have zero-or-more TaskMapDefinitions.
A TaskMap can have zero-or-more TaskMapAssignments.
A TaskMapDefinition can belong to one TaskMap.
A TaskMapDefinition can be associated with one TaskItem.
A TaskMapDefinition can have zero-or-more dependent child TaskMapDefinitions, and zero-or-more dependent parent
TaskMapDefinitions.
A TaskMapDefinition can have zero-or-more TaskMapDefFilters.
A TaskMapDefFilter can be associated with one TaskMapDefinition.
A TaskMapAssignment can reference one TaskMap.
A TaskMapAssignment can have zero-or-more TaskAssignments.
A TaskAssignment can reference one TaskMapAssignment.
A TaskAssignment can reference one TaskItem.
A TaskAssignment can reference one TargetItem.
A TaskAssignment can have zero-or-more dependent child TaskAssignments, and zero-or-more dependent parent
TaskAssignments.
A TaskAssignment can have zero-or-more ItemProperties.
A TaskAssignmentUserAction can reference one TaskAssignmentStatus.

R P S  C MD B  D etail D escriptions       

Nodes

Nodes provide a physical location for a set of containers, target items and local resource items that is globally identifiable by the
synchronization of data between nodes. Custom node properties are stored in an item property bag.

For example, the defined hierarchy of nodes are assigned containers, then also task and resource assignments. A parent node can
automatically provide a child node through synchronization data describing a patch or other release, and the controller can begin
to execute the release as soon as the data is available.

Containers – Automations Scope

Containers provide a scoping mechanism to properly ‘group’ items together for automations purposes. It is defined as the top-
most parent in a TargetItem’s hierarchy. When a parent/child hierarchy of TargetItems is established, the highest-level item is
automatically derived as the “Container”. Custom Container properties are stored in an item property bag.

When executing TaskMaps that require more complex execution chains, the container provides the scope that is representative of
how to coordinate those tasks across devices. This enables the capability to define many similar sets of devices with different
scopes for automation purposes.

Consider a series of systems that are interdependent, such as a set of servers on which different pieces of software reside.



Software or devices may require that certain components are configured before others. The container offers a scoping
mechanism for how those dependencies relate.

Other examples include:

A datacenter containing servers. Representing the datacenter as a TargetItem, then adding child TargetItems.
A vehicle containing equipment. Representing the vehicle as an TargetItem, then adding computer devices as child
TargetItems.

Both of these offer the scope necessary to automate their TargetItems as related to each other.

IMPORTANT

A TargetItem may only belong to one container. Containers cannot belong to other containers, as they are derived from the top-most parent
item in a parent TargetItem / child TargetItem hierarchy.

Target I tems – Target D evice D ata   

TargetItems represent the data about an individual item and its properties. A target item is simply a data representation of the
device that requires automation. This could be physical or logical. A target item belongs to a container for the purposes of scope
and executions. Custom TargetItem properties are stored in an item property bag.

Examples include:

A computer or server
A router or switch
A ‘vehicle’, logically vehicle may be physical, it is not a ‘device’ that we automate against, however there may be a model in
which that is the case.

NOTE

TargetItems also maintain a parent-child relationship to each other, leaving the highest-level parent always automatically defined as the
container. This offers the ability to structure item relationships around their relationships to other items while maintaining a scope automatically.
As this scoping mechanism is logical in nature, it can be defined using whatever logic best suits the business case. (E.g., a “Vehicle” containing
vehicles, or a “Datacenter” containing servers, or a “Computer” containing software.) The figure below shows three sample target items, as related
to each other. Each has its own separate list of properties, but all exist within the context of the Container, while the container itself is the top-
most parent defined in the hierarchy of items.







TargetG roups

TargetGroups offer the ability to relate TargetItems into a bucket for administrative purposes. TargetGroups are used to group
together all items of a certain type, or all items based on a specific criterion. This provides administrative capabilities to assign
tasks to a large number of TargetItems with whatever common criteria are required by the business case. (E.g., “All Servers” or “All
Dell devices”, etc.) Custom TargetGroup properties are stored in an item property bag.

IMPORTANT

That TargetGroups do NOT offer the same scoping functionality that Containers do for the purposes of coordinating Tasks. TargetGroups
provide an administrative way to manage a bundle of TargetItems. Each is treated individually and iteratively whenever an action is taken against
the group, such as assigning tasks.

ResourceI tems - Associat ive Resource D ata  

ResourceItems represent a reusable, associative piece of data for broader consumption than an individual item or container. For
example, storing a list of all patches as required to be applied to Windows Servers, then associating that data to all Windows
Servers in our TargetItem data. Custom ResourceItem properties are stored in an item property bag.

Resources provide this mechanism by representing the patch data as a ResourceItem (what patch, where the files are located,
etc.). These details are the properties of the ResourceItem. This resource can then be associated to all of the relevant devices via a
ResourceAssignment. Providing a one-to-many relationship of that single Resource to as many TargetItems as deemed
applicable.





The figure below shows a simple ResourceItem and an example of the resource being ‘associated’ to various TargetItems or
Containers.

ResourceG roups

ResourceGroups offer identical functionality to TargetGroups in regard to ResourceItems. They provide a logical grouping
mechanism for grouping ResourceItems together for use and consumption. As with TargetGroups, the ResourceGroup does not
offer any scoping functionalities and is merely an administrative function. Custom ResourceGroup properties are stored in an
item property bag.

One benefit to ResourceGroups however, given their flexibility, is that they can be used to piece together configurations from
smaller sets of ResourceItems. Configurations can be stored as Resources, then added to various ResourceGroups to create
different configuration sets for different purposes.

ResourceAssignment

ResourceAssignments offer a correlation mechanism between ResourceItems and TargetItems and subsequently store a status
about that relationship. For example, defining a patch resource, and assigning it to a device allows for both the existence of that
correlation as well as its status. Custom ResourceAssignment properties are stored in an item property bag.

It is important to note however, the action of associating ResourceItems to TargetItems has no outward effect on automation. No
execution request is performed, and no action is taken simply by the action of creating this assignment. The assignment instead
creates the reference between that TargetItem so it may be leveraged in code. This provides both management of what
ResourceItems are assigned to what TargetItems as well as an optional AssignmentStatus for this relationship.



Using this mechanism is optional, as there may be cases where a ResourceItem does not have or require a status of the
Assignment. As a result, use of ResourceAssignments are to be leveraged as needed. While one may exist, it may contain null or
useless data.

Additionally, a ResourceAssignment is not required to make use of a ResourceItem in code. Storing ‘global’ information in a
ResourceItem without assigning it to anything is an expected use-case.

The diagram below and provides context to the resulting list of ResourceAssignments that would be generated if the displayed
associations were created.

R ES OU R CEITEM TAR G E T S TATU S

ResourceItem1 TargetItem1 Complete

ResourceItem1 TargetItem2 Incomplete

ResourceItem1 Container1 NULL

ResourceItem 1 TargetItem3 MiscStatus

TaskI tems

A TaskItem is an instance of a runbook registered to the RPS database. This represents a runbook that has been imported into
TMS for execution and is being added to RPS to be made available for coordinated execution by RPS. Custom TaskItem properties
are stored in an item property bag.

Runbooks can exist inside of TMS without being registered to RPS for control, coordination, and execution by the automation's
solution. This distinction registers an item for coordinated execution by RPS.



Task Maps - Coordinating P ieces of Automations

Automations requirements vary by need from installing software to configuring or installing firmware on devices that don’t
necessarily run common operating systems. This makes automations tasks in general quite difficult to author due to the
complexity of dependencies that exist when analyzing any specific goal. Coding these dependencies in begins to create a complex
web of code that can be tedious to manage as well as a difficult to update or change.

By coordinating componentized bits of code, each task can be isolated, re-used where able, and coordinated in the appropriate
order or executed individually if needed. This removes the concept of authoring automations into monolithic scripts by
coordinating the smaller pieces.

Each automation action’s state is represented by an assignment record (see TaskAssignments) containing information about the
TaskItem and TargetItem in the assignment. The status of that action/item relationship controls the flow of execution.

The RPS toolset provides this capability by managing state data about these executions and their intended target device. This
allows the code to be implemented and updated quickly, while maintaining this complex web of requirements. Additions and
changes become simply managing the order in which these activities are executed or making updates to the pieces that require
an update, without fear of breakage elsewhere.

Finally, it is important to note that when executing a TaskMap a scoping mechanism was designed to allow automations that
require cross-device dependencies to function. This mechanism is the “Container” as defined in the Device Metadata section of
this document. Containers offer the “highest level” relationship between a set of intended targets. When developing TaskMaps
which have these types of cross-device dependencies, those dependency checks are always performed within the scope of their
parent Container.

TaskMap D efin it ions – Filtering on C riteria   

When defining tasks for execution in a TaskMap, an optional filtering mechanism has been added to support choosing between
items of similar types.



As shown in the figure above, when defining a TaskItem to be run within a TaskMap, the definition may contain a Target ‘type’ of
device as well as provide criteria from that TargetItem’s Properties to isolate specific devices. For example, if multiple “Target1”
items existed in a Container, Property filters could be used to choose a specific instance of that item that meets only those criteria.

For example, a Vehicle may contain multiple computing units, but a specific computing unit may be required as a target. This
method of target definition allows for control of which TargetItems receive assigned tasks.

Task and TaskMap Assignments

When a TaskItem or TaskMap is assigned to a TargetItem or Container for execution, an assignment record is generated in the
RPS Database. This assignment record represents that execution request and persists the status of that request so the TaskMap
can be coordinated as it is defined.

Tracking/reacting to this status data provides the core mechanism for how task maps operate as well as basic reporting
information on whether or not a task was successful.

TaskMapAssignment records are persists a copy of the originating TaskMap and TaskMapDefinition along with the dependencies
between definitions for automation sequencing. The TaskAssignment records are used to identify TaskItem and TargetItem
execution status. Custom TaskAssignment properties are stored in an item property bag.

References

R P S  Task S tate D iagram    

The detailed design diagram for task states and how they are processed can be found here:

RPS > Trunk > Documents > Operations > TaskStateDiagram v1.10.vsd

NOTE

This document is intended to outline how task states are processed by the controller.

R P S  C MD B  – E R D  D atabase D iagram          

The detailed design diagram for database entity relationships (ER) can be found here:

RPS > Trunk > Documents > Architecture > RPSEntityRelationshipDiagram.vsd

NOTE

This document is intended to outline how database entities are related to each other.

More Resources
RPS Software Design
RPS Configuration Management (DSC) Software Design







Configuration Changes to a Two Domain Architecture
Last updated on August 3, 2021.

Last Reviewed and Approved on PENDING REVIEW

Data Changes for Architecture of two domains, Unit.domain & Rps.local

Account Changes
New

An account with the role FileTransferServiceAccount needs to be added to the unit domain (i.e. 45bct.army.mil) that
references the rpsadmin account (or Account with permissions to access the ContentStore) on the rps.local domain.

For example: 
RpsTransferAccount,ad.unit.domain,rps,rpsadmin,FileTransferServiceAccount,,FALSE,FALSE,FALSE,TRUE,,,

A new account is needed with the Role FileTransferServiceAccount.
This account is assigned to all Targets that are not on the rps.local domain.
This account allows for non rps.local domain systems to connect to the ContentStore.

Modified

RpsAdmin needs the role of Domain Admin and only assigned to the systems on the rps.local domain.
The Following roles need to be changed and created in the rps.local domain only:

SqlServiceAccount
WebApiServiceAccount
TaskManagementServiceAccount
GuiServiceAccount
ProvisioningServiceAccount
CdnServiceAccount

The following accounts need to be across all servers: the unit domain and the rps.local domain.
RpsDomainJoin (2 separate accounts, 1 for unit.domain and 1 for rps.local)
DatabaseAccount (this account is the same for both domains)

There are two accounts with the name administrator for the unit domain:
One with the prefix of the server and the role LocalAdmin (AD\Administrator).
One with the prefix of the domain and the role DomainAdmin (Unit\Administrator).
There needs to be an account with the role LocalAdmin on all other servers on the unit.domain.

Certificates
Changes

Each server on the unit.domain needs the following certificates:
WinRm
DscEncryption
RpsClientCdn
RpsRoot

All servers with RPS need the following certificates:
WinRm
DscEncryption
RpsSyncSSL
RpsWebApiSsl
RpsSync



RpsGuiSsl
RpsClientCdn
RpsRoot
MasterEncryption
NodeEncryption

RPS servers used for provisioning need:
ProvisioningSsl

Properties
Changes

DomainName - This is the property that identifies the domain the server is part of. Currently this is set on the Node level
and inherited to the children. This needs to be set on the TargetItems that are different than the Node.

In our example, this is set on all TargetItems with type VirtualMachine that are part of the unit.domain.

The ForestName on the Node is changed on the Node to rps.local (This could be prefixed with the unit).
The ForestName needs to be added to the unit domain TargetItems so it does not inherit the ForestDomain from the node.
The DnsServerName on the Node is changed to the RPS server FQDN (App.rps.local).
Accounts with the following roles need to be added to the Domain Admins group on the RPS domain (rps.local):

ServerAdmin
GuiServiceAccount
TaskManagementAccount
WebApiServiceAccount

The NIC assigned to the RPS server gets the property IsDnsListener and is set to $true.
The NIC assigned to all systems on the unit.domain gets the property DnsServer and is set to unit.domain (This could be
prefixed with the unit).
All RPS servers that are not a Domain Controller point their DNS to the Domain Controller server IP and set their local IP as
the second DNS Server. This is set on their NIC.

ResourceItems
New

A new RpsDomain needs to be added, rps.local (This could be prefixed with the unit).
A new DnsZone is added, rps.local.
A new partial to install DNS and set up secondary zones needs to be imported.
All systems that have RPS but are not a Domain Controller need to assign the partial DNS to them.
There needs to be multiple DNSZones created for each Unit.domain and rps.local:

Two rps.local DNS zones
1 DNS zone, rps.local, with all RPS server IPs to include the NOSC RPS server IP.
1 DNS zone, rps.local, with the NOSC RPS Server IP.

Two unit.domain DNS zones
1 DNS zone, unit.domain, with all the RPS Server IPs and the unit.domain Domain Controller IP.
1 DNS zone, unit.domain, with unit.domain Domain Controller IP.

The RPS child systems at the TCN and SNE level get the rps.local and unit.domain DnsZones assigned.

Changes

SecondaryServers property is added to DnsZones.
To be able to transfer the zones to the child RPS servers, we identify them as secondary servers that will host the zone.
This will also allow the unit domains to be transferred to RPS, and vice versa.



STIGs
Changed

RPS at the NOSC level is assigned the STIGs that AD had.
RPS at the TCN and SNE level are assigned the DNS STIG and some additional skip rules that are conflicting.



Data Validation Schema Definition
Last updated on August 24, 2021.

Document Status: Document Developer Quality Complete.

Introduction
This section describes JSON Schema and their properties.

Schema Definition
JSON Schema is a powerful tool for validating the structure of JSON data. JSON Schema are built around two core data
structures: Objects and Arrays.

Object

A JSON object is a collection of properties inside a curly brace. The properties are key-value pairs where the key is always of type
string and value can be any data type: string, boolean, or int.

{
    "Name" : "TestSchema",
    "IsList" : true 
}

Array

A JSON array is a list of objects inside a square bracket and separated by a comma.

[
    {
        "Name" : "TestSchema1",
        "IsList" : true 
    },
    {
        "Name" : "TestSchema2",
        "IsList" : false 
    }
]

Keywords

The following keywords are used in JSON Schema:

K EYW OR D D ES CR IPTION

Name Describes the name of the schema.

Type Describes the object type.

Properties Describes the key-value pairs of an object.

AvailableExtensions Describes extensions that can be used with the schema.

D ata Types

The following data types are used in JSON Schema:



D ATA T YPES D ES CR IPTION

System.String This is enclosed in double quotes.

System.Int32 This is a non-fractional number ranging from 1 - 2147483647.

System.Boolean This is true/false without quotes.

JSON Schema Example
A sample JSON Schema follows:

{
  "Name": "TestSchema",
  "Type": "TargetItem",
  "Properties": [
     {
      "Name": "MemoryMB",
      "Type": "System.Int32",
      "Attributes": [
        {
          "Name": "RequiredAttribute",
          "Values": {}
        },
        {
          "Name": "RangeAttribute",
          "Values": {
            "minimum": 1,
            "maximum": 2147483647
          }
        },
        {
          "Name": "DefaultValueAttribute",
          "Values": { "value": 2048 }
        }
      ]
    },
    {
      "Name": "BaseImage",
      "Type": "ResourceItem",
      "SchemaReference": "BaseImage",
      "NonValidationMetadata": {
        "DisplayName": "Base Image/Type"
      },
      "Attributes": [
        {
          "Name": "RequiredAttribute",
          "Values": {}
        }
      ]
    }
  ],
  "AvailableExtensions": [
    "IsDB",
    "IsCDN",
    "IsDC",
    "IsGUI",
    "IsProvisioningNic",
    "IsSync"
  ]
}



Getting to Know Properties
The following keywords are used when defining Properties:

K EYW OR D D ES CR IPTION

Name Describes the name of the property.

Type Describes data types of the property.

SchemaReference References the child schema.

Attributes Describes validation attributes.

IsList Describes whether the property is list or not.

NonValidationMetadata Describes all the properties which do not require validation.

WARNING

When adding a new property to the schema, the Name  keyword cannot be set to a value of ExtraProperties. Example:

{
    "Name": "ExtraProperties",
    "Type": "System.String"
}

ExtraProperties is used internally by RPS as a Data Validation keyword. If ExtraProperties is used in a schema, validation errors will occur:

During item validation in REACTR.
During the creation of a new Target Item or Resource Item: when validating against the updated schema for the item type that contains
the property name ExtraProperties.

Attributes

Attributes are used to validate the given property. There are four custom validation attributes implemented. They are described
below:

1 .    ValidateDateT ime  Attribute

{
    "Name": "Date",
    "Type": "System.String",
    "Attributes": [
     {
        "Name": "ValidateDateTime",
        "Values": { }
     }
   ]
}

ValidateDateTime Attribute validates the property which requires Datetime value. Currently, this attribute supports two date-time
formats:

MM/dd/yyyy

MM/dd/yyyy hh:mm tt





2.   ValidateE xpression   Attribute

{
    "Name": "Role",
    "IsList": true,
    "Type": "System.String",
    "Attributes": [
     {
        "Name": "ValidateExpression",
        "Values": 
          {
            "expression": "$_ -Contains rpsadmin",
            "atLeast": 1
          }
     }
   ]
}

ValidateExpression Attribute validates the property by making sure the expression is true.

In this particular example, the expression is true if the name of the role contains rpsadmin. The value for the atLeast property is
making sure the expression is true for at least 1 item in the list.

3.   ValidateI pAddress   Attribute

[
    {
      "Name": "IpAddressA",
      "Type": "System.String",
      "Attributes": [
         {
            "Name": "ValidateIpAddress",
            "Values": 
            {
                "LowerBoundIp": "10.0.0.0",
                "UpperBoundIp": "10.0.0.20"
            }
         }
      ]
    },
    {
        "Name": "IpAddressB",
        "Type": "System.String",
        "Attributes": [
         {
            "Name": "ValidateIpAddress",
            "Values": {}
         }
       ]
    }
]

ValidateIpAddress Attribute validates the property type of the IP Address. A custom IP range can be set by setting LowerBoundIp
and UpperBoundIp.

NOTE

If no value is assigned for LowerBoundIp and UpperBoundIp, then the attribute will assign default values of 0.0.0.0 to LowerBoundIp and
255.255.255.255 to UpperBoundIp.

In this particular case, it is not required to explicitly declare in schema.





Alternatively, a Subnet can be provided in CIDR range instead of a LowerBoundIp and UpperBoundIp. This will calculate the
LowerBoundIp and UpperBoundIp based on the provided Subnet.

[
    {
      "Name": "IpAddressA",
      "Type": "System.String",
      "Attributes": [
         {
            "Name": "ValidateIpAddress",
            "Values": 
            {
                "Subnet": "10.0.0.0/8"
            }
         }
      ]
    },
    {
        "Name": "IpAddressB",
        "Type": "System.String",
        "Attributes": [
         {
            "Name": "ValidateIpAddress",
            "Values": {}
         }
       ]
    }
]

In the example above, 10.0.0.0/8 would translate to a LowerBoundIp of 10.0.0.0 and UpperBoundIp of 10.255.255.255.

If neither a Subnet nor a LowerBoundIP and UpperBoundIP are assigned, the attribute will assign default values of 0.0.0.0 to
LowerBoundIp and 255.255.255.255 to UpperBoundIp.

4.  ValidateMacAddress  Attribute

{
    "Name": "Date",
    "Type": "System.String",
    "Attributes": [
      {
        "Name": "ValidateMacAddress",
        "Values": { }
      }
   ]
}

ValidateMacAddress Attribute validates that the property type is a MAC Address.

For more information on additional attributes such as RequiredAttribute, RangeAttributes, and DefaultValueAttribute, refer to
Microsoft docs link: https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations?view=net-5.0

Schema Reference

In the TestSchema below, we have a property with the Name "BaseImage". It has SchemaReference property with value
"BaseImage". BaseImage is a schema with its own sets of all JSON data types and properties. TestSchema will inherit all the
properties of BaseImage schema.



 {
    "Name": "BaseImage",
    "Type": ResourceItem,
    "SchemaReference": "BaseImage",
    "NonValidationMetadata": {
    "DisplayName": "Base Image/Type"
    },
    "Attributes": [
      {
          "Name": "RequiredAttribute",
          "Values": {}
      }
    ]
}

Create, Update and Delete the Schema
Currently, all schemas must be manually created, updated, and deleted.



Data Validation Integration in RPS
Last updated on August 13, 2021.

Last Reviewed and Approved on PENDING REVIEW

Introduction
This section describes the integration of the Data Validation service in RPS.

Data Validation in RPS
The Data Validation service validates RPS object types (ResourceItem, ResourceGroup, TargetItem and TargetGroup) on all create,
update, and delete operations. During this process, Data Validation validates that all properties on the item are in alignment with
the schema for that object's type. New-RPSResourceItem, New-RPSTargetItem, New-RPSTargetGroup, and New-
RPSResourceGroup are some of the commands that trigger Data Validation.

For more information on schemas and their validation attributes, refer to: Data Validation Schema Definition.

Schema and Log File Location
Validation log files are located in C:\ContentStore\DataValidation\logs\
Schema are placed in folders based on their types:

Schema of ResourceItem types are located in C:\ContentStore\DataValidation\Schemas\ResourceItem\
Schema of ResourceGroup types are located in C:\ContentStore\DataValidation\Schemas\ResourceGroup\
Schema of TargetItem types are located in C:\ContentStore\DataValidation\Schemas\TargetItem\
Extensions are located in C:\ContentStore\DataValidation\Schemas\Extensions\

Throwing Errors & Logging with Data Validation
Data Validation can be configured to behave in one of two ways:

Log errors to the validation log file.
Throw errors and halt the operation.

The RPS settings key LogSchemaValidation controls this Data Validation configuration.

NOTE

By default, LogSchemaValidation is set to null, which is considered "true".

If the value of LogSchemaValidation is true (or null/default), Data Validation will log any errors to the validation log file and will
complete the operation.

If the value of LogSchemaValidation is false, Data Validation will throw any errors and halt the operation.

G et  LogSchemaValidation  Value

Settings key LogSchemaValidation value can be obtained using the following command:

Get-RpsStorageValue -Key LogSchemaValidation

Set LogSchemaValidation  Value

NOTE







LogSchemaValidation value can only be set by users with the SuperAdmin or RpsAdmin roles.

Settings key LogSchemaValidation value can be set with the following command:

Set-RpsStorageValue -Key LogSchemaValidation -Value false

In this example, LogSchemaValidation value is set to false.

Data Validation Example
This example creates a new resource item of type VMKernelAdapter (which targets the VMKernelAdapter schema). VlanId is
required field in the schema.

When LogSchemaValidation value is true:

1. Set the LogSchemaValidation value to true.

Set-RpsStorageValue -Key LogSchemaValidation -Value true

2. Create property object without VlanId and run New-RpsResourceItem command.

$vmKernelAdapterProps = @{
            VMKernelAdapterName = "VMKernelAdapterName"
            IpAddress = "192.168.1.2";
            Subnet = "255.255.255.0";
        }

New-RpsResourceItem -Type VMKernelAdapter -Name "vmka" -Properties $vmKernelAdapterProps

In this scenario, the resource item is created because the rps setting value is set to true. The expected error is: 
VMKernelAdapter data validation error: The VlanId field is required.

It is logged in the Validation log file at C:\ContentStore\DataValidation\logs\ .

When LogSchemaValidation value is false:

1. Set the LogSchemaValidation value to false.

Set-RpsStorageValue -Key LogSchemaValidation -Value false

2. Create property object without VlanId and run New-RpsResourceItem command.

$vmKernelAdapterProps = @{
            VMKernelAdapterName = "VMKernelAdapterName"
            IpAddress = "192.168.1.2";
            Subnet = "255.255.255.0";
        }

New-RpsResourceItem -Type VMKernelAdapter -Name "vmka" -Properties $vmKernelAdapterProps

In this scenario, the resource item will not be created because the rps setting value is set to false. The command will
throw the error VMKernelAdapter data validation error: The VlanId field is required.

It is logged in the Validation log file at C:\ContentStore\DataValidation\logs\ .



RPS Certificate Management Technical Design
Last updated on May 05, 2021.

Last Reviewed and Approved on PENDING REVIEW

Table of Contents
Introduction
Certificate Management Overview
Rolling Certificate Process
Certificate data in RPS

Introduction
This document describes the Certificate Management feature and its technical design. The technical design was established based
on requirements gathered from the customer, constraints of existing systems, and an analysis of benefits and tradeoffs of various
design decisions.

Certificate Management Overview
RPS Certificate Management describes the approach to storing and managing certificates in the RPS configuration management
database (CMDB). The data stored in the CMDB can then be used to deploy the certificates to Targets also stored in the CMDB.
Certificates are represented and managed in the RPS CMDB as resource items that describe the properties and attributes of the
certificate. For a list of detailed certificates properties, please see Certificate data in RPS. For more information about specific
certificate usage in RPS, please see Certificate Usage

Rolling Certificate Process
RPS Certificate Management provides the ability to roll certificates. The term "roll" a certificate, refers to replacing one certificate
with another certificate of the same type. A few potential reasons for rolling certificates include, a security breach, certificate
expirations, or moving from self-signed to Certificate Authority signed.

The process of rolling RPS certificates is orchestrated by invoking a task map that consists of the following runbooks:

R U NB OOK NAME D ES CR IPTION

Refresh-
RpsSelfSignedCerts The request disposition message returned by the Certificate Authority after a certificate request submission.

Update-
MasterKeyProtection Imports the master key certificate and encrypts the master key with the new certificate.

Set-
EncryptionSettings

Imports and configures the certificate used for PowerShell Desired State Configuration (DSC) encryption and
decryption.

Set-WinRmSettings Installs and configures the certificates used for Windows Remote Management (WinRm).

Publish-
DscConfiguration

Using data in the CMDB, compiles and publishes DSC configurations to targets. DSC will install and configure
certificates across the various application and RPS components.

Certificate data in RPS



Certificates are represented in the RPS database as Resource Items of type Certificate. As of RPS 4.0, additional properties are
supported on Certificate resource items to support the rolling process. The following tables describes each property used for RPS
certificates.

PR OPER T Y NAME D ES CR IPTION

DispositionMessage The request disposition message returned by the Certificate Authority after a certificate request submission.

ExprirationDate Certificate expiry date.

FriendlyName Certificate Friendly Name.

GenericRole Generic role used to provision the certificate based on an RPS certificate template.

IssuedBy Issuer of the certificate.

Password Password used to export the certificate's private key.

PrivateBase64Content Base 64 encoded private key.

PublicBase64Content Base 64 encoded public key.

PublicKeyPath Location of the Public Key certificate on the file system.

RequestDisposition The request disposition flag returned by the Certificate Authority after a request submission.

RequestId The ID of the certificate request returned by the Certificate Authority.

RequestStatus The status of the certificate request. Complete/Pending/Incomplete.

Role The certificate role name that defines its RPS use case.

RoleValidForRegen Specifies whether the certificate can be rolled.

SigningType Type of certificate. RpsSigned/CASigned

SubjectAlternativeName Certificate Subject Alternative Name (SAN).

SubjectName Certificate Subject Name.

TemplateName The name of the template to use when requesting a certificate from a Certificate Authority.

Thumbprint Thumbprint of the certificate.



Certificate Usage
Last updated on August 30, 2021.

Document Status: Document Developer Quality Complete.

Introduction
The future security needs of the RPS security infrastructure are currently planned to depend on a Public Key Infrastructure (PKI).
However, the current landscape of development for the project does not allow for the full implementation of PKI. In its absence, a
Self-Signed Certificate strategy has been developed as a temporary measure to provide improved security over plain text secrets
and ease the future adoption of full PKI.

By default, RPS includes a variety of certificates (even self-signed/RPS-signed) to showcase functionality, and it is expected that
these development or test certificates will be replaced with appropriate secure and trusted certificates to perform the various
functions using the roles indicated.

IMPORTANT

Each certificate must have a certificate root that is trusted by the local host (i.e., Trusted Root Certification Authorities).

WARNING

Use of self-signed or untrustworthy certificates presents a security risk for all assets and functions "secured" by said certificates.

NOTE

The .pfx file is capable of storing both public and private keys whereas the .cer file is generated from the .pfx and contains only the public key.

Certificate Roles and Functions
The tables below map certificates in the ContentStore, as well as certificates generated by the deployment, to their role and
corresponding function.

R P S  Specific Roles  

The following table describes all the RPS Certificate Roles. For details on how each certificate's requirements, see corresponding
Generic Role row in the Generic Role Templates table below.

R PS  R OLE NAME
G ENER IC R OLE
NAME S COPE OTHER NOTES

CertManager ClientAuthentication Hosts that will access the Certificate
Manager plugin

Used for certificate authentication with
Certificate Manager Plugin

DscEncryption DscEncryption All computers Credential encryption in DSC .mof files

DscPullServer DscPullServer All computers configured for DSC Pull
mode

Used for certificate authentication with
DSC Pull Server

MasterKeyEncryption MasterKeyEncryption Computers where RPS protected
properties will need to be accessed Used for decryption of RPS Master Key









NodeEncryption DscEncryption Provisioning hosts Used for encryption of exported RPS Node
data

ProvisioningSSL ProvisioningSSL Provisioning hosts RPS Provisioning endpoint

RdtSsl SSL Computers where RDT is installed RDT UI HTTPS binding

RpsApi ClientAuthentication Hosts that will access the RpsApi plugin Used for certificate authentication with
RPS Api Plugin

RpsGuiSSL SSL RpsGui hosts RPS Gui HTTPS binding

RpsPackage ClientAuthentication All Computers Used for certificate authentication with
RPS Package Manager Plugin

RpsRoot Root All Computers Used to sign initial RPS Certificates

RpsSync ClientAuthentication RpsSync hosts Cert:\CurrentUser\My 
for Sync account

RpsSyncSSL SSL RpsSync hosts RpsSync HTTPS endpoint

RpsWebApiSsl SSL RPS Web API hosts RPS Web API HTTPS endpoint

WinRm ServerAuthentication All computers PowerShell HTTPS endpoint

R PS  R OLE NAME
G ENER IC R OLE
NAME S COPE OTHER NOTES

G eneric Role Templates

The following table describes the specific certificate attributes required by each generic role. The Key Usages and Enhanced Key
Usages should be used for referenced when creating certificate templates. The signature algorithm and key length columns
indicate the default values for certificates signed by RPS root certificate. All RPS certificate roles support Elliptical Curve
Cryptography based algorithms and larger key lengths, with the exception of DscEncryption. The certificate used for
DscEncryption only support RSA algorithm.

G ENER IC R OLE NAME K EY U S AG ES ENHANCED  K EY U S AG ES
S IG NATU R E 
ALG OR ITHM

K EY 
LENG TH

ClientAuthentication Client Authentication (1.3.6.1.5.5.7.3.2) SHA256 2048

DscEncryption Key Encipherment, 
Data Encipherment (30) Document Encryption (1.3.6.1.4.1.311.80.1) SHA256 2048

DscPullServer Digital Signature (80) Client Authentication (1.3.6.1.5.5.7.3.2) SHA256 2048

ProvisioningSSL Data Encipherment, 
Key Encipherment (e0) Server Authentication (1.3.6.1.5.5.7.3.1) SHA256 2048

Root
Certificate Signing, 
Off-line CRL Signing, 
CRL Signing (06)

SHA256 4096



ServerAuthentication
Digital Signature, 
Non-Repudiation, 
Key Encipherment (e0)

Server Authentication (1.3.6.1.5.5.7.3.1) SHA256 2048

SSL
Digital Signature, 
Non-Repudiation, 
Key Encipherment (e0)

SHA256 2048

G ENER IC R OLE NAME K EY U S AG ES ENHANCED  K EY U S AG ES
S IG NATU R E 
ALG OR ITHM

K EY 
LENG TH

Generating Certificates
Certificates can be generated as part of the installer process or supplied from an external PKI. By default, the New-
RpsNodeConfiguration.ps1 script will generate self-signed certificates for each role and server using the existing configuration
data. If external certificates will be used,the certificate data file located at 
{ContentRoot}\Setup\Configuration\MNCertificateData.psd1  will need to be updated to store the certificate role and
password information. The certificates themselves must also be stored in the following path: {ContentRoot}\Certificates . The
naming convention required for each certificate file should be as follows: {TargetItemName}_{CertificateRole}.pfx/cer .

Set-RpsCer t ificate 

As part of the Rps-Encryption PowerShell module, the Set-RpsCertificate  function generates a certificate based on Rps
template and imports it into the CMDB. If the certificate already exists at the path specified, it will only import the certificate into
the CMDB.

For detailed documentation on this function from PowerShell, run Get-Help Set-RpsCertificate .

Example:

$properties = @{
    SigningCertificate = @{
        Name     = 'RpsRoot.pfx'
        Password = 'ExamplePasswordHere'
    }
    CertificateFolderPath = 'C:\ContentStore\Certificates'
    'Member.Unit.Domain' = @{
        RpsSync = 'ExamplePasswordHere'
    }
}
$targetItem = Get-RpsTargetItem -Name 'Member.Unit.Domain' -Type 'VirtualMachine'
Set-RpsCertificate -Role RpsSync -Target $targetItem -Properties $properties

New-RpsCer t ificate 

Also part of the Rps-Encryption module, the New-RpsCertificate  function allows you to create template driven certificates. The
function will generate certificates but do not import the certificate into an existing Rps session.

For detailed documentation on this function from PowerShell, run Get-Help Set-RpsCertificate .

Example:



$parameters = @{
    Type                   = 'SSL'
    SubjectName            = 'Member'
    SubjectAlternativeName = 'member.unit.domain'
    FriendlyName           = 'Member.unit.domain RpsWebApiSSL'
    OutputPath             = 'C:\ContentStore\Certificates\Member.unit.domain_RpsWebApiSSL.pfx'
    Password               = ConvertTo-SecureString 'ExamplePassword' -AsPlainText -Force
    NotBefore              = Get-Date
    NotAfter               = (Get-Date).AddYears(2)
    SigningCertificatePath = 'C:\ContentStore\Certificates\RpsRoot.pfx'
    SigningCertificatePassword = ConvertTo-SecureString 'ExamplePasswordHere' -AsPlainText -Force
}

New-RpsCertificate @parameters

Impor t-RpsCer t ificate  

As part of the Rps-Installer module, the Import-RpsCertificate  function allows you to import an existing certificate into the Rps
CMDB.

For detailed documentation on this function from PowerShell, run Get-Help Set-RpsCertificate .

Example:

# Get the target item to assign the certificate to.
$targetItem = Get-RpsTargetItem -Name 'Member.Unit.Domain' -Type 'VirtualMachine'
$password = ConvertTo-SecureString 'ExamplePasswordHere' -AsPlainText -Force
Import-RpsCertificate -Name 'Member.unit.domain_RpsWebApiSSL' -Path 
'C:\ContentStore\Certificates\Member.unit.domain_RpsWebApiSSL.pfx' -Password $password -AssignTo $targetItem 
-Role RpsWebApiSsl

The New-RpsCertificate  function implements the New-RpsSelfSignedCertificate  function in the Rps-Encryption Module. The 
New-RpsSelfSignedCertificate  function is generic and allows the configuration of many different certificate settings.

PostgreSQL Encryption
SSL connections encrypt all data sent across the network: the password, the queries, and the data returned. The pg_hba.conf file
allows administrators to specify which hosts can use non-encrypted connections (host) and which require SSL-encrypted
connections (hostssl). Also, clients can specify that they connect to servers only via SSL. Stunnel or SSH can also be used to
encrypt transmissions.

R P S  D atabase Encryption   

RPS is configured to use SSL connections for the RPS CMDB using DSC. The certificate used to secure the DEK is generated
automatically with DSC, is called RpsDatabaseCertificate.crt, and is backed up to disk (by default in C:\Backups\Certificates ).
The server’s master key is backed up to RpsDatabaseMasterKey.crt using the password supplied for the RPS Configuration.

WARNING

The compromise of the certificates could allow malicious users to retrieve unencrypted data. Follow proven certificate management and backup
practices to mitigate security vulnerabilities while preserving the ability for a legitimate administrator to restore the RPS CMDB or TMS databases
if needed.





Certificate Requirements for Linux Clients
Last updated on January 28, 2021.

Last Reviewed and Approved on PENDING REVIEW

Introduction
This document describes the certificate requirements to leverage Patch Management in Rapid Provisioning System (RPS) for
Linux clients. Additionally, this document also provides instructions on installing the certificate required.

Document Overview
Patch Management in RPS requires communication via HTTPS. The certificate authority (CA) that signed the webserver's
certificate must be trusted by the Linux client or patches will not be downloaded. This is done by installing the public certificate of
the CA. This document is considered a living document and subject to change.

Installing the RPS CA Public Certificate
1. Copy the RPS CA public certificate to Linux machine.

a. The RPS CA public certificate is located in \ContentStore\Certificates\RpsRoot.cer

2. Convert to .pem file with openssl tool.

a. openssl x509 -inform der -in certificate.cer -out certificate.pem

b. If you receive a 0D0680A8 and 0D07803A error, the certificate is already in the correct format. The only change needed is
to change the certificate's file extension from .cer to .pem

3. Rename RpsRoot.cer to RpsRoot.pem

a. mv RpsRoot.cer RpsRoot.pem

4. Once the certificate has the .pem extension copy certificate to:

a. /etc/pki/ca-trust/source/anchors/

5. Import the certificate with the following command:

a. update-ca-trust extract

b. The certificate will be added to the /etc/pki/ca-trust/extracted/pem/tls-ca-bundle.pem  file.

6. Verify the certificate imported with the following command:

a. cat /etc/pki/ca-trust/extracted/pem/tls-ca-bundle.pem | grep RPS



Certificate Request Plugin Configuration
Last updated on September 9, 2021.

Document Status: Document Developer Quality Complete.

Introduction
The Certificate Request REST endpoint is a plugin that runs on the RPS Web API. The plugin serves as a Certificate Authority (CA)
interface for RPS, but can operate independently of RPS.

Requirements
The following sections describe the requirements for configuring the Certificate Request plugin.

R P S  Sett ings   

RPS Settings are encrypted settings stored in %APPDATA%\Rps\RpsSettings.txt . The settings can be configured using 
Set-RpsStorageValue  cmdlet and retrieved using Get-RpsStorageValue  from the Rps-Api module. The following settings are
required for the RPS Web API host to run correctly:

S E T TING  NAME PU R POS E

RpsWebApiThumbprint Thumbprint of the certificate that will be used for RPS Web API host SSL binding.

RpsWebApiUrl The URL the RPS Web API host will listen on. For example: https://member.unit.domain:8080

RpsWebApi F iles

FOLD ER NAME PU R POS E

C:\Source\RpsWebApi Contains the files required to run the RPS Web API host.

C:\Source\RpsWebApi\Plugins\Rps.CertificateRequest.RpsPlugin Contains the plugin required to run the Certificate Request REST
endpoint.

RpsWebApi Service

RpsWebApi should be configured as a service with the executable path set to: C:\Source\RpsWebApi\Rps.Web.Api.exe .

RpsWebApi Service Account

The Windows account running the RpsWebApi service needs the following:

Granted the Log on as a service User Rights Assignment.
The certificate specified by thumbprint in the RpsWebApiThumbprint setting, will need to be installed in the
Cert:\CurrentUser\My certificate store of the RpsWebApi service account.

Registered Service Principal Name (SPN) in the domain. For example, from a Windows command prompt using the setspn
command, the following code snippet would register the service account named RpsWebApiSvc for HTTP service running on
a server named member.unit.domain:

setspn -S HTTP/member.unit.domain RpsWebApiSvc



Certificate Request Process
Last updated on September 9, 2021.

Document Status: Document Developer Quality Complete.

Introduction
The goal of this article is to describe the workflow to request and retrieve certificates from a Certification Authority (CA) using
RPS. It is a data-driven process that uses RPS CMDB to take the existing certificate resource items and generate certificate signing
requests (CSRs) and then retrieve the certificates from the CA. Throughout the process, the CMDB is updated with the responses
from the CA.

The RPS certificate request process pairs with Certificate Rolling and should be performed prior to certificate rolling in order to
roll with CA signed certificates. See Certificate Rolling for more details on rolling certificates.

Prerequisites
In order for the Certificate Request Process to work, the following prerequisites must be in place. Please see RPS Certificate
Management Technical Design for additional details on RPS Certificate Management architecture.

RPS Web API host running on a node, for example NOSC, (see 
DSC Configuration ContentStore\Dsc\PartialConfigurations\RpsWebApi.ps1 ), with the following plugins present
under ContentStore\RpsWebApi\Plugins:

.\Rps.Api.Rest.RpsPlugin

.\Rps.CertificateManager.RpsPlugin

RPS Web API host running on a server with the following:
Network access to the intended Active Directory Certificate Services (AD CS) Certification Authority (CA).
See Certificate Request Plugin Configuration for details on Rps.CertificateRequest.RpsPlugin configuration.

Active Directory Certificate Services Certification Authority installed and configured, for example DCA.
AD CS CA certificate templates created for the supporting RPS certificates. See the Generic Role Templates section in
Certificate Usage for details on template requirements.

CA Enabled Certificate Resource Items
The RPS Certificate Request process will take action on ResourceItems of Type Certificate  and have a property 
SigningType = 'CaSigned' . RPS Certificate Manager will take appropriate action based on the RequestStatus  property value of
each ResourceItem, as described in the table below. RPS Certificate Manager will set the values to Pending  and Complete  when
appropriate, but new ResourceItems with SigningType = 'CaSigned'  should have their RequestStatus = 'NotRequested' .

R EQU ES TS TATU S ACTION D ES CR IPTION

NotRequested Create a CSR. This should be the initial value.

Pending Retrieve the certificate public key from
the CA.

This value will be set after a CSR has been successfully submitted to the
CA.

Complete No action taken. Once the public key has been successfully retrieved from the CA, this value
will be set.

New-RpsC AS ignedResource 



The recommended method to create the CA Enabled Certificate ResourceItems is using the New-RpsCASignedResource  function
from Rps-Encryption module. The function will use from existing certificate ResourceItems to generate a CA Enabled certificate
ResourceItem that will be signed by a certificate authority. The created resource item will be based on an existing certificate
resource item properties that would be needed to create a CSR to fulfill an appropriate certificate for the respective role.

Example

The following example would take all Certificate ResourceItems that are not CASigned  or have the role RpsRoot  and generated
the necessary CA Enabled Certificate ResourceItems:

$certificates = Get-RpsResourceItem -Type $Rps.ResourceTypes.Certificate | Where-Object -FilterScript 
{$_.SigningType -ne 'CASigned' -band $_.Role -ne 'RpsRoot'}
$certificates | New-RpsCASignedResource

Process Certificates REST Endpoint
The certificate request process is initiated by using a REST client to invoke the ProcessCertificates  endpoint on the RPS
Certificate Manager plugin. Any REST client can be used, but this article will be using the PowerShell cmdlet Invoke-RestMethod
to make the REST request.

R E S T Parameters  

NAME T YPE D ES CR IPTION

NodeId Guid The node ID to request certificates for.

CaName String The Certification Authority name to submit requests to. Example format of a CA Name would be 
AD.unit.domain\TPKI-LAB-DCA-CA .

Example

The following example shows how to request certificates from the NOSC for a child node like TCN.

$node = Get-RpsNode -Name NOSC
$childNode = Get-RpsNode -Name TCN

# Get the active client authentication certificate for the NOSC CertManager REST Endpoint
$targetItem = Get-RpsTargetItem -Type VirtualMachine -Name nosc.rps.local
$clientAuthCertificate = Get-RpsResourceItem -Type Certificate -Role 'CertManager' -TargetItem $targetItem -
IsActive $true

$processCertificatesParameters = @{
    # The URI and parameters for the certificate manager endpoint.
    Uri = "https://nosc.rps.local:777/CertManager/v1.0/CertificateManager/ProcessCertificates/?
nodeId=$($childNode.Id)&caname=$($node.CertificateAuthorityName)"
    # The certificate for this corresponding thumbprint must be installed in either the Computer or User MY 
cert store.
    CertificateThumbprint = $clientAuthCertificate.thumbprint
}

# Use Invoke-RestMethod cmdlet to initiate the certificate request process
Invoke-RestMethod @processCertificatesParameters



Rolling Certificates
Last updated on February 12, 2021.

Last Reviewed and Approved on PENDING REVIEW

Introduction
Certificates can be rolled "replaced" through both PowerShell and the RPS Web UI.

The certificate rolling process is executed through the assignment of the UpdateNodeCertificates  TaskMap (which is of
TaskMap type CertificatesManagement ). This TaskMap contains the instructions, or more specifically the Task Map steps,
responsible for correctly publishing the updated certificate configuration. Additionally, it also creates and activates new RPS
signed and CA signed certificates, along with publishing Desired State Configuration (DSC), configuring Windows-Remote
Management (WinRM) encryption settings, and other RPS certificate roles.

Through PowerShell, the UpdateNodeCertificates  TaskMap can be utilized by either making an assignment to a specific
TargetItem, or to a TargetGroup. However, in this documentation, we will focus on rolling certificates to all targets (using the
dynamic/smart group) under a specified Node. The process of making the assignment between the UpdateNodeCertificates
TaskMap and the dynamic group is automated, and subjectively much simpler, through the Web UI.

Dynamic groups are essentially auto-generated TargetGroups, based on a set of filters and conditions. For more detailed
documentation on dynamic groups, please reference Creating a Dynamic Group. The dynamic group which we will be primarily
concerned with for certificate rolling is of type ManagedCertificate_Targets , and will be named based on the following syntax 
{Name}-ManagedCertificate  (where Name is the name of the Node).

Step-by-step instructions on how to roll certificates, through your method of choice, can be found below.

PowerShell
1. You will need to obtain and store the UpdateNodeCertificates  TaskMap.

$taskMap = Get-RpsTaskMap -Type $Rps.TaskMapTypes.CertificatesManagement -Name 
$Rps.TaskMapNames.UpdateNodeCertificates

NOTE

If you already know the name of the Node for which you would like to roll certificates, you may skip this step.

2. We will be getting the Node by Id, and storing its name.

$node = Get-RpsNode -Id "1a38129b-b8ac-4523-be79-94cfc929ba4b"
$nodeName = $node.Name

3. Get and store the dynamic group 'TargetGroup' by name, using the following syntax:

$dynamicGroup = Get-RpsTargetGroup -Name "$nodeName-ManagedCertificate"

4. Finally, we will create the TaskMapAssignment between the previously saved TaskMap and dynamic group. This will initiate
the certificate rolling process.

New-RpsTaskAssignment -TaskMap $taskMap -TargetGroup $dynamicGroup -NodeIdToRunOn $node.Id





Web UI
1. Through the Web UI, certificate rolling is performed through the Certificate Management web page (accessible via the

Distribution drop-down). Please navigate to this page.

Figure 1: Certificate Management page

1. Using the panel on the left-hand side of the screen, search for and then select the Node for which you would like to
roll/deploy certificates to.

Figure 2: Selecting Node

1. When you are ready, click on the Deploy  button for the selected Node on the Certificate Management page. This will
assign the UpdateNodeCertificates  TaskMap to the dynamic group, and begin the certificate rolling process.



Figure 3: Confirm Install

1. To check the status of the certificate rolling processes, navigate to the Assignments page by selecting Assignments from
the Tasking drop-down on the menu bar.

Figure 4: Checking Rolling Status

1. On the left side of the Assignments page you can filter by Target Group or by Status. You can view the Status of your
deployment within the filtered results in the center of the page. If any, you can view applicable messages on the right side of
the Assignments page under Message



Figure 5: Checking Rolling Status



Authoring RPS DSC Partial Configurations
Last updated on March 9, 2020.

Last Reviewed and Approved on PENDING REVIEW

DSC Partial Configurations (Partial Configs) are used to organize and apply a set of configuration settings to a target computer.
Multiple partial configs can be applied and combined to form the full DSC configuration applied to a target computer. RPS-
enabled Partial Configs are ones that adhere to specific guidelines which allow them to be used by RPS to configure and publish
configurations to computers on an RPS Node.

This document contains the guidelines to create RPS-enabled Partial Configurations.

Outline
1. RPS-Enabled Partial Config
2. Common Parameters
3. RPS-Mapped Parameters
4. DependsOn
5. Importing Partial Configs into RPS
6. Testing Partial Config data with RPS
7. Publishing from RPS

RPS-Enabled Partial Config
What is "R P S-Enabled"? 

"RPS-Enabled" indicates that a Partial Config is capable of being automatically published by RPS. In order to do this, a partial must
adhere to certain rules:

1. Partial must contain baseline parameters used for secure publishing.
2. Partial must describe its dependencies and required inputs.
3. Partial and DSC Modules must be imported into RPS.

Sample Par t ial Config 

This sample partial configuration shows the common elements of an RPS-enabled partial.



using namespace Rps.Api.PowerShell
using namespace Rps.Api.Constants

[DependsOn(DscPartialName = 'OSCore')]
Param
(
    [Parameter(Mandatory = $true)]
    [ValidateScript({[ipaddress]::Parse($_)})]
    [string]
    $IPAddress,

    [Parameter(Mandatory = $true)]
    [ResourceItemMapping(EntityType = [ResourceTypes]::Certificate, Role = 'DSCEncryption')]
    [Hashtable]
    $DSCEncryptionCertificate,

    [Parameter(Mandatory = $true)]
    [string]
    $OutputPath
)

Configuration SampleConfiguration
{
    Import-DscResource -ModuleName 'PSDesiredStateConfiguration' -ModuleVersion 1.1
    Import-DscResource -ModuleName 'SampleDscModule' -ModuleVersion 1.0

    Node $IPAddress
    {
        File SampleFile
        {
            Ensure = 'Present'
            SourcePath = "sourcepath"
            DestinationPath = "destinationPath"
            Force = $true
        }

        SampleDscResource SampleResourceName
        {
            Ensure = 'Present'
            Properties = Values
        }
    }
}

$certificatesPath = (Get-Item "$PSScriptRoot\..\..\Certificates").FullName

$ConfigData = @{
    AllNodes = @(
        @{
            # DSC Encryption common data
            CertificateFile = ConvertTo-RootedPath -Filename $DSCEncryptionCertificate.PublicKeyPath -
FolderPath $certificatesPath
            Thumbprint = $DSCEncryptionCertificate.Thumbprint

            NodeName = $IPAddress
            PSDscAllowDomainUser = $true
        }
    )
}

$null = SampleConfiguration -ConfigurationData $ConfigData -OutputPath $OutputPath

Common Parameters



All RPS Partial Configs must define the following parameters:

1. IPAddress - Accessible IPAddress of the computer we'll publish DSC Configuration to.
2. DSCEncryptionCertificate - Information about the certificate used to encrypt the mof (configuration). The LCM is set to

use this certificate and any partials that are not secured will not run on a target.
3. OutputPath - Location to temporarily store the mof file once its compiled.

RPS-Mapped Parameters
The main advantage of using RPS-enabled partials is that they can be dynamically built from data within RPS' CMDB. When
published through RPS, RPS will supply a partial config with values for all parameters from the CMDB. This system of mapping is
based on a few simple conventions and parameter attributes.

For more information on RPS-Mapped Parameters see How to configure Rps-Mapped Parameters

R P S  Native Parameters  

RPS supports another parameter type, [Rps.Api.TargetItem] . If you supply a parameter of this type, RPS will return the native
TargetItem you are publishing to. From there, you are free to use the Rps-Api module and objects to access any data.

Par t ial Config D ependencies  

Some Partial Configs rely on others, and to optimize publishing, they need to be compiled and published in the right order.

To indicate to RPS a dependency, use the [DependsOn]  attribute above the param block:

[DependsOn(DscPartialName = 'OSCore', Mandatory = $true)]

DscPartialName is the name of the partial which is depended on.
Mandatory indicates that the dependent partial is required on this target. If $false , this dependency is ignored if the
dependent partial isn't assigned to the target.

Importing Partial Configs into RPS
Partial Configs must be imported into RPS in order to be published via RPS. When a partial is imported, RPS parses the file and
stores the metadata about the partial, its parameters and its dependencies as ResourceItems. Once imported, the partial is able to
be assigned to a computer, represented as a TargetItem.

Impor ting a Par t ial  

Save Partial configs in the \DSC\PartialConfigurations\ folder.
Save any referenced DSC Resources to the \DSC\Modules\ folder.
Import the Partial via the Import-DscPartial  cmdlet, found in the Rps-Dsc module.
Specify a folder or file for -Path

Example:  Impor t all D S C  Par t ials      

Set-Location $ContentStore
Import-Module .\Modules\Rps-Api
Import-Module .\Modules\Rps-Dsc

Enter-RpsSession

Import-DscPartial -Path .\DSC\PartialConfigurations

Testing a Par t ial  

You can test the RPS supplied configuration data for a partial by using the Get-DscPartialParam  cmdlet. This is useful for
understanding how configuration data from Targets and Resources is passed to the DSC Partial.



The cmdlet returns a Hashtable  that can be splatted for use directly with the Partial.

Example:  G et Config D ata for OS Core   

Set-Location $ContentStore
Import-Module .\Modules\Rps-Api
Import-Module .\Modules\Rps-Dsc

Enter-RpsSession

# import partial for OSCore
$partialPath = ".\dsc\PartialConfigurations"
Import-DscPartial -Path $partialPath
$osCorePartial = Set-RpsResourceItem -Type $Rps.ResourceTypes.DscPartial -Name OSCore

# create target item
$computer = Set-RpsTargetItem -Type $Rps.TargetTypes.Computer -Name "TestComputer1" `
    -Properties @{ ComputerName = "DEMO"; IPAddress = "10.0.0.1"; JoinDomain = "true" }

# set node properties
$containerNode = Get-RpsContainerNode -TargetItem $computer
$containerNode.SystemTimeZone = "UTC"
$containerNode.OutputPath = "c:\temp"
$containerNode.DomainName = "rps.master"
Set-RpsNode -Node $containerNode

# assign certificate
$dscCert = Set-RpsResourceItem -Type $Rps.ResourceTypes.Certificate -Name "DSCCert" `
    -Properties @{ Role = "DscEncryption"; Path = "test"; Password = "something" }
$null = New-RpsResourceAssignment -ResourceItem $dscCert -TargetItem $computer

# assign partial
$assignment = New-RpsResourceAssignment -ResourceItem $osCorePartial -TargetItem $computer

# get DSC Params
Get-DscPartialParam -PartialAssignment $assignment

Output

PS > Get-DscPartialParam -PartialAssignment $assignment
[12:55:30 INF] No credential resolved on 4ca80061-7951-4ecc-bf40-b7afcd297119: DomainAdmin
[12:55:30 INF] No value resolved on 4ca80061-7951-4ecc-bf40-b7afcd297119: ServerAdmin mapping ResourceItem in 
OSCore didn't yield one match.

Name                           Value
----                           -----
SystemTimeZone                 UTC
LocalAccount                   {}
DomainName                     rps.master
ComputerName                   DEMO
DomainAdmin
DscEncryptionCertificate       {Path, Password, Role, Name...}
NetworkConfig                  {}
IPAddress                      10.0.0.1
JoinDomain                     True
IsDC                           False
OutputPath                     c:\temp\6c94d0db-235c-418b-ad48-f40944899960\OSCore
ServerAdmin

Assigning a Par t ial 

Once imported, the Partial Config is saved as a ResourceItem in RPS. To publish a configuration from RPS, you must first assign
one or more ResourceItems representing partials to the desired computer TargetItem.



Import-Module .\Modules\Rps-Api
$vm = New-RpsTargetItem -Type $Rps.TargetTypes.VirtualMachine -Name DemoVM1 -Properties { IPAddress = 
"10.0.0.17" }
$softwarePartial = Get-RpsResourceItem -Type $Rps.ResourceTypes.DscPartial -Name "SoftwareDistribution"
New-RpsResourceAssignment -ResourceItem $softwarePartial -TargetItem $vm

P ublish ing a Par t ial   

RPS Publishes DSC Partials using the Publish-RpsConfiguration runbook. This runbook is triggered from a fresh RPS Install,
from an assigned Task or TaskMap, or via RPS Web.

Addit ional T ips 

1. Using statements at the top improve readability. Without them, you must fully qualify Rps specific objects.

using namespace Rps.Api.PowerShell
using namespace Rps.Api.Constants

[DependsOn(DscPartialName = 'OSCore')] # instead of [Rps.Api.PowerShell.DependsOn(...)]

2. ConfigurationName - Use a meaningful name for the configuration. This name identifies the Partial Config in RPS and the 
DependsOn  attribute.

3. For all resources you use in your partial you will need to import the module inside the configuration block. Include the 
-ModuleVersion  in your import statements to avoid issues with multiple module versions.

    Import-DscResource –ModuleName 'RPS_RPSApi' -ModuleVersion 1.0

1. $certificatesPath  indicates the location where certificates are stored. Do not modify its value.
2. configData - This is the basic configuration for a partial. You can add parameters to this HashTable but this is the minimum.

This sets up the mof encryption for the target.



Authoring RPS DSC Resources
Last updated on March 15, 2019.

Last Reviewed and Approved on PENDING REVIEW

The Rapid Provisioning System use Desired State Configuration to manage itself and other target computers to configure and
prevent the drift from discrete states. A major piece of implementing DSC is the development and maintenance of Resources. This
document will outline the steps for authoring and consuming DSC resources within RPS.

Using the Resource Within A Partial
To use a configuration of a resource within a partial you simply need to import the DSC resource.

For example, when needing to use the RPS_RpsApi resource add the below line within your configuration.

Configuration RPSPrivilegedAccount
{
    Import-DscResource -Module 'RPS_RpsApi'

    Node $TargetName
}

TER M D EFINIT ION

DSC Desired State Configuration.

Adding the resource to the RPS CMDB
The entire RPS CMDB data structure used by DSC can be found within the RPS Configuration Management (DSC) Design
document. This document can be found at $/Documents/Operations/RPS Configuration Management (DSC) Design.docx.

DSC resources are added to the CMDB as RPS resource items.

Resources used by partials are added by name as a comma-delimited list to the partial configuration Resource Item.



Using the resource within the initial Install
To add a DSC resource to the RPS offline build, add the new resource to the New-RpsXmlConfiguration script within the Setup
directory matching the structure described in the section above.



Introduction to DSC Pull Server
Last updated on May 27, 2021.

Last Reviewed and Approved on PENDING REVIEW

Introduction
A DSC Pull Server is an endpoint that you can configure clients to connect to in order to have clients pull configurations from a
central location. When the client connects, it registers with the Pull Server, downloads configurations for the client, downloads the
modules needed for the configuration, and, if configured, sends reports back to the Pull Server.

Plugin
The DSC Pull Server that is part of RPS is based off of tug. It has been modified to be part of the RPS Web API plugin architecture
and uses the RpsWebApi. This makes the plugin dependent on the RPS Web API.

The plugin uses the same port as the RPS Web API (default: 777).

The plugin is located in the ContentStore\Plugins\Rps.DscPullServer.RpsPlugin. When RPS is deployed, the RpsWebApi partial
copies the plugins to ContentStore\RpsWebApi\Plugins.

The plugin uses RPS Settings to set the path for the var folder that the plugin will use. The property used to set this is
DscServerVarPath. This setting is set in the RPSWebApi partial. If this setting is not used, it defaults to the root of the
Rps.DscPullServer.RpsPlugin folder.

Logs generated by the Pull Server plugin will be generated in the Application Logs in the Event Viewer under Windows Logs.
These logs will have a Source of Rps.Web.Api.

Report Server
The Report Server is part of the DSC Pull Server Plugin. The Report Server is an endpoint where the LCM can send the JSON
reports that are created when the LCM runs a job. These are stored in the var\DscService\Reports.

LCM - Local Configuration Manager
In order for the LCM to connect to the Pull Server, there are settings that need to be configured.

B asic Sett ings 

Other than specifying pull service endpoints/paths and partial configurations, all of the properties of the LCM are configured in a
Settings block. The following setting is what is changed to set it to Pull.

PR OPER T Y D ES CR IPTION

RefreshMode This has to be set to Pull.

Configuration Server B lock

To define a web-based configuration server, a ConfigurationRepositoryWeb block must be created. Below are the settings that
RPS sets for the Pull Server.

PR OPER T Y D ES CR IPTION



ConfigurationNames An array of names of configurations to be pulled by the client.

RegistrationKey A GUID that registers the node with the pull service.

ServerURL The URL of the configuration service.

PR OPER T Y D ES CR IPTION

Repor t Server B lock 

To define a report server, a ReportServerWeb block must be created. Below are the settings that RPS sets for the Report Server.

PR OPER T Y D ES CR IPTION

Registration Key A GUID that identifies the node to the pull service.

ServerURL The URL of the report service.

Certificates
A certificate is needed for all communication with the DSC Pull Server and for registration. Every time the LCM attempts to
register with the Pull Server, it creates a self-signed certificate. Registration fails if the self-signed certificate is not trusted by the
Pull Server.

RPS has a DscPullServer certificate that is used. This certificate is installed on the clients that will use the Pull Server. This
certificate chain must be trusted by the Pull Server.

NOTE

To account for the self-signed certificate, every time the LCM settings are set for the Pull Server, RPS will remove the self-signed certificate.





RPS Settings for DSC Pull Server
Last updated on May 27, 2021.

Last Reviewed and Approved on PENDING REVIEW

RPS Required Settings
Node P roper t ies  

PR OPER T Y D ES CR IPTION

DscServerVarPath Path to where the var folder is located. This folder holds registrations, configurations, resources, and reports.

DscConfigurationUrl URL to the DSC Pull Server. Value is used to set the Configuration Server Block for LCM on the targets under the
node.

DscReportServerUrl URL to the DSC Report Server. Value is used to set the Report Server Block for LCM on the targets under the node.

Target I tem P roper t ies    

PR OPER T Y D EFAU LT D ES CR IPTION VALU ES

DscRefreshMode Push, if property does not exist. DscRefreshMode that the LCM is set to. Push, Pull

ResourceI tems

Each RPS Target that has the DscRefreshMode set to Pull will need a ResourceItem with Type Certificate with the role of
DscPullServer.

At deployment, or when a target is changed to Pull, a ResourceItem with Type Certificate will be generated with SigningType
RpsSigned. In addition, another ResourceItem with Type Certificate will be created that has SigningType CASigned. The second
ResourceItem is used to enable certificate rolling from RpsSigned to CASigned for the DscPullServer certificate. To learn more
about certificate rolling, see: Rolling Certificates

D scP ullServer 

PR OPER T Y R EQU IR EMENT E X AMPLE

SubjectName Must be the URL of the Pull
Server. CN=https://APP.rps.local:777/DscPullServer/v1.0/DscPullServer

SubjectAlternativeName Must be the URL of the Pull
Server. https://APP.rps.local:777/DscPullServer/v1.0/DscPullServer

Role Must be DscPullServer. DscPullServer



Runbooks and TaskMaps for DSC Pull Server
Last updated on May 27, 2021.

Last Reviewed and Approved on PENDING REVIEW

DSC Pull Server Runbooks
The following runbooks have some functionality that the DSC Pull Server depends on.

Compress-D scModules

The Compress-DscModules runbook finds all the modules in the ContentStore\DSC\Modules and then compresses them to the
location specified at DSCServerVarPath. It names the zip files according to the naming scheme needed by the LCM.

Switch-D scC lientRefreshMode 

The Switch-DscClientRefreshMode runbook will change the DscRefreshMode property on the TargetItem. If it is set to Push, it will
change it to Pull. If it is Pull, it will change it to Push.

If the TargetItem does not have a DscRefreshMode property, this runbook will set the DscRefreshMode on that target to 'Push'.

Update-D scRegistrat ionFile 

The Update-DscRegistrationFile runbook will update the Registration.txt file that is used to verify a client's Registration Key during
the registration process. It looks at the CMDB, finds all computers (physical or virtual) that have DscRefreshMode set to Pull, and
updates the file. The file is located from the DscServerVarPath → DscService\Authz.

I nstall-D scP ullC lientCer t ificate     

The Install-DscPullClientCertificate runbook installs the certificate needed for DSC Client Auth for the Pull Server on Windows
targets. If a ResourceItem Type certificate and role of DscPullServer does not exist, it will create the certificate prior to installing it
on the target.

I nstall-L inuxD scP ullC lientCer t ificate      

The Install-LinuxDscPullClientCertificate runbook installs the certificate needed for DSC Client Auth for the Pull Server on Linux
targets. If a ResourceItem Type certificate and role of DscPullServer does not exist, it will create the certificate prior to installing it
on the target.

P ublish-D scConfiguration 

The Publish-DscConfiguration runbook will create the MOF file(s) for the target by looking up all the partials assigned to the
target in the CMDB. If the target has DscRefreshmode set to Pull, it will merge the partial configuration MOFs into a single MOF
named according to the target IP and place in the DscServerVarPath → DscService\Configurations. Next, this runbook will set the
LCMConfiguration Server Block to have the configuration name that was created, and apply to the target.

Set-D scRepor tServer 

The Set-DscReportServer runbook will set the Report Server Block on the targets LCM. This enables reports to be sent to the DSC
Pull Server and saved to DscServerVarPath → DscService\Reports.

NOTE

A property on the node, DscReportServerUrl, is required to set the ReportServer on a target. If this property is NOT on the node, it will remove
the ReportServer from a target.

DSC Pull Server TaskMaps





These taskmaps were created to streamline the process of changing from Push to Pull, and Pull to Push, for DSC. To see how to
assign taskmaps, reference the Task Map Assignment RPS Tasking Guide.

Set-D scP ushToP ull  

The Set-DscPushToPull taskmap will make all the changes required to change a target from Push to Pull.

The following runbooks make up this taskmap:

1. Compress-DscModules
2. Switch-DscClientRefreshMode - Filter {DscRefreshMode = Push}
3. Update-DscRegistrationFile
4. Install-DscPullClientCertificate - Filter {OSType = Windows}
5. Install-LinuxDscPullClientCertificate - Filter {OSType = Linux}
6. Publish-DscConfiguration
7. Set-DscReportServer

Set-D scP ullToP ush  

The Set-DscPullToPush taskmap will make all the changes required to change a target from Pull to Push.

The following runbooks make up this taskmap:

1. Switch-DscClientRefreshMode - Filter {DscRefreshMode = Pull}
2. Update-DscRegistrationFile
3. Copy-DscModules
4. Publish-DscConfiguration
5. Set-DscReportServer



Create a Host Through Rapid Provisioning System (RPS)
Last updated on January 13, 2021.

Last Reviewed and Approved on PENDING REVIEW

This guide shows the process to create a new Host for RPS to use during Virtual Machine deployment.

Create a Resource Item that represents the Host
1. Open a web browser to the RPS Website, for example: https://localhost:8080
2. In RPS, choose Resourcing > Resources 

3. Choose Add Resource > VMTemplate 

4. Set the requested information, and then click Save

VMTEMPL ATE S E T TING S D ES CR IPTIONS

Name (Required) The desired name for Host in RPS

Type (Required) Must be Host. Pre-populated

ComputerName (Required) The name of the server acting as the Virtual Machine Host.

HostType (Required) The type of host, e.g. Hyper-V, ESXi

Path (Required) The path to save the virtual machines

NOTE

Click Add Property to add custom fields for your Credential.

More Resources





Create a Hyper-V Virtual Machine Through Rapid Provisioning System (RPS)
Create RPS Credentials Through Rapid Provisioning System (RPS)
Create a Virtual Machine Template Through Rapid Provisioning System (RPS)



Create RPS Credentials through Rapid Provisioning System
(RPS)
Last updated on January 13, 2021.

Last Reviewed and Approved on PENDING REVIEW

This guide shows the process to create new credentials to use in RPS.

Create a Resource Item that Represent the Credential
1. Open a web browser to the RPS Website, for example: https://localhost:8080

2. In RPS, choose Resourcing > Resources 

3. Choose Add Resource > Credential 

4. Set the requested information, and then click Save

VMTEMPL ATE
S E T TING S D ES CR IPTIONS

Name (Required) The name you want to give the Credential in RPS

Type (Required) Must be Credential. Pre-populated

UserName (Required) The UserName of the credential

Password (Required) The Password of the credential. This password can be automatically generated by pressing the Generate
Password button.

Roles (Required) The role the credential will be used for. Multiple roles can be added, separated by a '|'

NOTE

Click Add Property to add custom fields for your Credential.





More Resources
Create a Host Through Rapid Provisioning System (RPS)
Create a Hyper-V Virtual Machine Through Rapid Provisioning System (RPS)
Create a Virtual Machine Template Through Rapid Provisioning System (RPS)



Create a Virtual Machine Template Through Rapid
Provisioning System (RPS)
Last updated on January 13, 2021.

Last Reviewed and Approved on PENDING REVIEW

This guide shows the process to create a new Virtual Machine template for RPS to use during Virtual Machine deployment.

Create a Resource Item that Represents the Virtual Machine
1. Open a web browser to the RPS Website, for example: https://localhost:8080

2. In RPS, choose Resourcing > Resources 

3. Choose Add Resource > VMTemplate 

4. Set the requested information, and then click Save.



VMTEMPL ATE S E T TING S D ES CR IPTIONS

Name (Required) The desired name for the VMTemplate in RPS

Type (Required) Must be VMTemplate. Pre-populated

Path (Required) The path to the .vhdx file, relative to Content Store

NOTE

Click Add Property to add custom fields for your Virtual Machine Template.

More Resources
Create a Host Through Rapid Provisioning System (RPS)
Create RPS Credentials Through Rapid Provisioning System (RPS)
Create a Hyper-V Virtual Machine Through Rapid Provisioning System (RPS)





Create a Hyper-V Virtual Machine through Rapid Provisioning
System (RPS)
Last updated on March 26, 2021.

Last Reviewed and Approved on PENDING REVIEW

This guide shows the process to create a new Target Item to deploy as a Hyper-V Virtual Machine.

Create a Target Item that represents the Virtual Machine
1. Open a web browser to the RPS Website, for example: https://localhost:8080
2. In RPS, choose Targeting > Containers 

3. Choose Add Target > Virtual Machine 

4. Set the requested information, and then click Save

VIR TU AL MACHINE S E T TING S D ES CR IPTIONS

Name (Required) The desired name to give the Target Item (Virtual Machine) in RPS

Type (Required) Must be VirtualMachine. Pre-populated

ComputerName (Required) The name of the computer as it is in Active Directory

MemoryMB (Required) The amount of memory the machine needs in MB

OSType (Required) The Virtual Machines operating system, e.g. Windows



OSVersion (Required) The version on the operating system, e.g. 8.1 for Windows Server 2012 R2

Architecture (Required) The architecture of the Virtual Machine, e.g. x86, x64

IsCDN [Boolean] Set to true if this Virtual Machine will have RPS role Content Delivery Network

IsTaskManagement [Boolean] Set to true is this Virtual Machine will have RPS role Task Management Service

IsDB [Boolean] Set to true if this Virtual Machine will have RPS role PostgreSQL Database

IsDC [Boolean] Set to true if this Virtual Machine will have RPS role Active Directory Domain Controller

VIR TU AL MACHINE S E T TING S D ES CR IPTIONS

NOTE

Click Add Property to add custom fields for the Virtual Machine.

Create a child Target Item that represents the Network Configuration
1. Click on the new Virtual Machine
2. Under All Items, choose Add Child Target Item. 

3. Set the requested information, then click Save.

NOTE

To add properties, click Add Property button. The required fields must be added to create a New Hyper-V Virtual Machine. The next
update will use a template to pre-populate the fields.

NE T W OR K CONFIG U R ATION
S E T TING S D ES CR IPTIONS

Name (Required) The desired name to give the Network Adapter in RPS

Type (Required) Must be NetworkConfiguration

Alias (Required) The name of the Network Adapter on the Host you are creating the Virtual Machine

IpAddress (Required) The IP Address of the Virtual Machine

Subnet (Required) The subnet of the Virtual Machine

DnsServer (Required) The IP Address of the DNS Server

MacAddress The desired MAC Address for the Virtual Machine. If left blank, the Virtual Machine will get a dynamic
MAC Address







DHCP The IP Address of the DHCP server

NE T W OR K CONFIG U R ATION
S E T TING S D ES CR IPTIONS

NOTE

Click Add Property to add custom fields for your Virtual Machine.

Add the Hyper-V Virtual Machine Template
1. Under Resource Assignments, click Add Resource Assignment. 

2. Click on the Resource Assignment dropdown, choose the Resource Item that represents the Virtual Machine Template.
Click Save.

NOTE

The Resource Item will have a type of VMTemplate. If the desired Virtual Machine template is not visible, then see: Create a Virtual
Machine Template Through RPS Guide.

Add the desired Hyper-v Host
1. Under Resource Assignments, click Add Resource Assignment. 

2. Click on Resource Assignment drop down, choose the Resource Item that represents the Host. Click Save.

NOTE

Resource Item will have a type of Host. If you do not see the Host you want to use then you can create your own following the How to
Create a Host Guide.

Add Local Administrator Credentials
1. Under Resource Assignments, click Add Resource Assignment. 

2. Click on Resource Assignment drop down, choose the Resource Item that represents the Local Admin Credentials. Click
Save

NOTE











Resource Item will have a type of Credential. If you do not see the Credential you want to use then you can create your own following
the Create RPS Credentials Guide.

Provision the Virtual Machine
1. Under Properties, click Provision Virtual Machine. 

NOTE

This action creates a new Task to create the VM on the assigned Hypervisor Host. RPS will begin processing the task in the background.
Refresh the view to see the status of the task.

More Resources
Create a Host Through Rapid Provisioning System (RPS)
Create RPS Credentials Through Rapid Provisioning System (RPS)
Create a Virtual Machine Template Through Rapid Provisioning System (RPS)





RPS Building iPXE ROMs
Last updated on March 15, 2019.

Last Reviewed and Approved on PENDING REVIEW

This guide shows how to configure an iPXE ROM with the specific options/features needed to be used within RPS.

Process Overview
The following steps are required to build a iPXE ROM that is trusted by the RPS root certificate:

Install prerequisites
Download iPXE source
Build ROM

Prerequisites
iPXE source
Admin Workstation
Linux workstation such as Ubuntu OR WSL (Windows Subsystem for Linux)
Linux packages
GCC
binutils
make
syslinux (required for building ISOs)
genisoimage (required for building ISOs)
liblzma

RPS public root certificate, Base64 encoded

NOTE

Most of the tools required to build an iPXE ROM are Linux based and can only be executed from Bash (Unix Shell). However, a Unix
operating system is not required. The process in this document has been completed leveraging WSL (Windows Subsystem for Linux). WSL
is available on a machine running 64-bit version of Windows 10 Anniversary Update build 14393 or later. If the development machine
that the ROM is being built from does not have the required prerequisites an internet connection will be required to install them.

Installing the Tools in Bash
1. Update the package list, sudo apt update
2. Install GCC, sudo apt install gcc
3. Install binutils, sudo apt install binutils
4. Install make, sudo apt install make
5. Install syslinux, sudo apt install syslinux
6. Install genisoimage, sudo apt install genisoimage
7. Install liblzma, sudo apt install liblzma-dev
8. Install git, sudo apt install git

Download iPXE source and Build ROM that Trusts the RPS CA Root
Certificate

1. Navigate to the directory the source will be downloaded to and clone iPXE repository: git clone git://git.ipxe.org/ipxe.git





2. After source is downloaded navigate to ipxe/src: cd ipxe/src

3. To build a ROM that trusts the RPS root certificate run the following:

make bin-x86_64-efi/ipxe.efi TRUST=<path to certificate> CERT=<path to certificate>

b. Here is an example of building an iPXE, EFI compatible, ROM with the RPS certificate in the local folder.

make bin-x86_64-efi/ipxe.efi TRUST=RPSbase64Ca.cer CERT=RPSbase64Ca.cer

NOTE

The ROM will be in the bin-x86_64-efi folder

iPXE ROM Build Command Examples
All the examples are executed from the ipxe/src folder.

1. Create an iPXE bootable ISO that trust the RPS root cert

make bin/ipxe.iso TRUST=RPSbase64Ca.cer CERT=RPSbase64Ca.

2. Create iPXE ROMs for all the compatible ESXi network adapters

make bin/8086100f.mrom bin/808610d3.mrom bin/10222000.rom bin/15ad07b0.

certutil.exe -encode CaRootCert.cer base64Ca.cer

NOTE

Ensure the RPS root cert is Base64 encoded. If not run the following command from a Windows environment:

More Resources
RPS PXE Document
Configuring ESXi VMs to Use iPXE







RPS PXE
Last updated on January 13, 2021.

Last Reviewed and Approved on PENDING REVIEW

A major function of the Rapid Provisioning System (RPS) is the ability for system users to perform bare metal provisioning of
computing devices through the use of a Pre-Boot Execution Environment (PXE). The decision to use a basic installation of
Windows Deployment Services (WDS) and Microsoft Deployment Toolkit (MDT) was made to allow for the smallest possible
footprint, as well as for ease of use.

Additionally, many deployed environments that utilize RPS are very unpowered and over-provisioned, where the use of a major
component such as System Center Configuration Manager (SCCM) would be impractical.

MDT and creating a WIM
Two components are required for setting up the Microsoft Deployment Toolkit (MDT) environment: 1) the Deployment Toolkit
itself, and 2) the Windows Assessment and Deployment Kit (ADK), which has all of the necessary tools required to allow a user to
create and customize a deployment environment using MDT.

The MDT can be downloaded from the following link: https://www.microsoft.com/en-us/download/details.aspx?id=50407
The ADK can be downloaded from the following link: https://www.microsoft.com/en-us/download/details.aspx?id=39982

The ADK needs to be installed first, and then MDT can be installed. Once it is installed, open the program called “Deployment
Workbench”. The interface looks like the following:

Creating a D eployment Share

The first step in setting up the environment is to create a new deployment share. To do this, right click on “Deployment Shares” in
the left pane and select “New Deployment Share”. The following wizard will appear:



Continue through the wizard, and at the options screen, uncheck all of the options. The summary screen before the Deployment
Share gets created should look like this:



Customizing a D eployment Share

1. Once the Deployment Share gets created, it will appear in the left pane under “Deployment Shares.” To customize it, right-click
your deployment share, and click properties. The deployment Share Properties Screen will appear.



2. On the general tab, select which platforms you will support. Generally, you only need to select “x86” because then you only
need to maintain one image, and it will work both on x86 and x64 platforms. On the Rules tab, click the “Edit Bootstrap.ini” button,
and edit the “DeployRoot” path to be the path where the deployment share will exist in your deployment environment. In the
same file, edit the UserID field to be the user which will access the deployment share from WinPE, the UserDomain to be the
User’s domain, the UserPassword to be the User’s password, and the TaskSequenceID to be the ID of the Task Sequence that will
be used in order to run deployments. This will be covered in a later step.



3. Save the changes you make to the Bootstrap.ini file, and continue on to the Windows PE tab. Navigate to the features tab, and
select the DISM Cmdlets, .NET Framework, and Windows PowerShell check boxes.



G enerating B oot Media 

Prior to completing these steps for generating boot media, you need to perform steps 1-3 for customizing a deployment share.

4. The last step is to generate the Windows Imaging Format (WIM) Boot media that will be used to run deployments. To do this,
right click on your deployment share, select “Update Deployment Share”, select the “Completely regenerate boot media” Radio
button, and complete the wizard. The final output will look like the following:



5. The WIM that is generated will be located in your deployment share folder, under the “Boot” Folder. The last step is that this
WIM that is generated needs to be imported into Windows Deployment Services (WDS) on the server that is going to be
responsible for running deployments. To do this, open the WDS console, expand Servers, expand your WDS server, right click on
Boot Images, select “Import Boot Image”, and then navigate to your deployment share and select the WIM that you created.



Adding Drivers to WIM
There are cases where the default network and storage drivers built into the WIM are not sufficient for running deployments, and
the client machine is either unable to communicate to the deployment server over the LAN or cannot access its storage. In these
cases, additional drivers need to be injected into the WIM so that connectivity can be restored.

Adding D rivers to MDT

In order to inject drivers into your WIM, you need to have the drivers downloaded and available on the machine where MDT is
installed. To inject the drivers, open the deployment workbench, expand your deployment share, right-click on “Out-of-Box
Drivers”, and then select “Import Drivers.” The following wizard will appear:



Select the browse button, navigate to the folder where your third-party drivers are located, select the folder and then complete
the wizard. If the drivers are imported successfully, they will appear in the middle pane of the deployment workbench as follows:



Configuring MDT to Use Third Par ty D rivers 

This process just makes the drivers available in your deployment workbench but has not yet injected the drivers into the WIM. To
do so, right-click on your deployment share, select Properties, and navigate to the Windows PE tab, and then the Drivers and
Patches tab. Select which type of drivers you want added to the WIM (you can either select all drivers that are available in your
deployment workbench, or specify a specific type over driver, and then click OK.



Once you determine your settings, you need to regenerate the WIM so that the newly added drivers are injected into it. To do so,
follow the process documented above in the WIM creation process.

Adding Additional Components to WIM
There are cases where additional components need to be added to your WIM, that cannot be done using the deployment
workbench. One such case is adding the environment variable connection string to the registry of the WIM, so that clients that are
in the Windows Pre-Boot Environment (WinPE), can import the RPS DAC dll and interface with the CMDB.

Mounting the WI M

To do this, create an empty folder on the server with MDT installed, in a location that is easily accessible. A good example of this
would be something like “C:\mount”. Next, open an administrator command prompt window, and enter the following command:

Cd C:\Program Files (x86)\Windows Kits\8.1\Assessment and Deployment Kit\Deployment Tools\x86\DISM

Once in the DISM directory, issue the following command:

dism /mount-image /imagefile:C:\DeploymentShare\Boot\LiteTouchPE_x86.wim /index:1 /mountdir:C:\mount

Make sure to replace the imagefile path to the location of your WIM, and the mountdir path to where you created that folder.

Loading the WI M Registry



Navigating to the empty folder you created will now show you the contents of your WIM. The connection string that is used by
the RPS API is a powerShell environment variable, which cannot be set inside of WinPE, unless already exists in the registry of the
WIM file. In order to do this, open the registry editor on the machine where you mounted the WIM, select
HKEY_LOCAL_MACHINE, then click File>Load Hive. Navigate to your mount directory, then to Windows, System32, config, and
select the file called “System”.

Adding new Registry Keys to WI M Registry

After selecting Open, the registry editor will prompt for a key name, enter “WIM”, and then select Ok. Expand
WIM>ControlSet001>Control>Session Manager>Environment. Right Click on the Environment folder and select New>String
Value. For the name of the registry key enter “RPSDbAddress” and for the Value, enter the following connection string:

Data Source=DB\RPS;Initial Catalog=Rps.Database;
MultipleActiveResultSets=True;user=user;password=password

Make sure the Data Source is the name of your SQL Server\InstanceName, the catalog is the name of the RPS CMDB Database,
and the user and password are the credentials of a local SQL Account with access to read and write to the database. It is important
to note that the user provided in the connection string must be a local SQL account, as domain accounts are not supported when
using SQL connection strings and supplying the username and password as part of the string. Once you have entered the
connection string, click OK to save the registry key. The key should now appear under the Environment folder.

Data Source = DB\RPS; Initial Catalog = Rps.Database;
MultipleActiveResultSets = True; user = user; password = password



Unloading Registry and Unmounting WI M

Navigate back up to the WIM folder that was created when the registry was mounted and select File>Unload Hive. Select Yes
when you are prompted to unload the hive, and then close the registry editor. Navigate back to the elevated command prompt
window that you used to mount the WIM, and issue the following command, making sure to indicate the correct mount directory.

.\dism.exe /unmount-image /mountdir:C:\mount /commit

A successful commit will result in the following:

The WIM now has the proper connection string stored as an environment variable and will be able to successfully connect to the
CMDB to interact with the API. If you need to add any additional third-party pieces of software, you can simply copy the
executables into the Windows/System32 Folder, so that they can be called from scripts within WinPE.

Task Sequences
Task sequences are a set of instructions that the devices that boot into WinPE will execute. Using the Deployment Workbench, a
user can easily add and remove steps to be performed while the client is in WinPE, as well as make task sequence variables
available to the client to be consumed during execution.

Creating a Task Sequence

In order to create a Task Sequence, open the Deployment Workbench, expand your Deployment Share, right-click on Task
Sequences, and select “New Task Sequence.” A wizard will open that will prompt for a Task Sequence ID as well as a Task
Sequence Name. For the ID, enter a short acronym that can easily be reference in the bootstrap.ini file discussed earlier. For
example, if this task sequence will be used to deploy Windows 10, a good ID would be “Win10”. The name is for your own
knowledge, so you can be as descriptive as you would like in this field. Complete the wizard to create your task sequence,
accepting the defaults.



Edit ing a Task Sequence

Once the task sequence has been created, you can begin editing it to suite your environment and the steps that you want to
clients to execute in order to deploy an operating system to your clients. To being editing your Task Sequence, right-click on the
Task Sequence in the Deployment Workbench and select “Properties”, the navigate to the “Task Sequence” tab. The following
window will appear. Note: This is an example of a task sequence where task sequence variables and steps have already been
supplied.

In order to add steps to your Task Sequence, click on the “Add” button at the top, select “General” and then select “Set Task
Sequence Variables.” Task Sequence Variables are pieces of information that clients will need to perform various functions. For
example, if the client is going to need to interface with RPS, it will need to know the Web Service Endpoint of the RPS server.
Instead of hardcoding that address into the script that will interface with RPS, it can be supplied as a variable that can be
consumed by the client, should it ever need to change.

Generally, it is recommend that you supply all of your necessary Task Sequence Variables as the first steps in the Task Sequence,
so that they are available to the client before any actual deployment logic is performed. After you have inputted all of your
necessary Task Sequence Variables, you can proceed to adding steps that require PowerShell Scripts to be executed, as well as
any other options that are required. All the available options are available under the “Add” button. Note: If you are adding
PowerShell scripts as steps in your task sequence, for the value of the “PowerShell script” field, the name of the script should be
entered in the following manner:



%SCRIPTROOT%\FilenameOfScript.ps1

All of the scripts required by your task sequence should be placed in the “Scripts” folder of your Deployment Share.

Credential Masking
Clients that boot into WinPE are not domain joined, and usually need domain account credentials in order to perform various
functions throughout the Task Sequence. One such example is if the client needs to interface with (Job Host Server TBD) in order
to start a Runbook. Storing the password as clear text is not recommended, and one method of getting around this is to use
PowerShell Obfuscation.

Encoding

Credentials within PowerShell as stored and consumed as Secure Strings. In order to do this, open a PowerShell session and issue
the following command, replacing “Password” with the password you want to secure:

$pass = "Password" | ConvertTo-SecureString -AsPlainText –Force

Conver t ing to Masked Credential 

If you return the $pass variable created above, you will note that it does not return the value of your “Password”, but instead
returns a PowerShell Object of Secure String. What we want to return is the hash that is generated from securing the password. In
order to do this, in the PowerShell session that you have open, issue the following command:

$hash = ConvertFrom-SecureString $pass -Key (1..16)

Now if you return $hash, a very long string of characters will be returned, which is the hashed version of your secure password.
You can then take this hashed value and store it as a Task Sequence Variable in your task sequence, to be consumed and utilized
by clients booting into WinPE.

Conver t ing Masked Credential B ack to a Secure S tring   

In order to convert the hashed value back into a Secure String, the following command is used:

$pass = $hash | ConvertTo-SecureString -Key (1..16)

Workflow Examples
The following section will provide some very basic examples of how to perform certain operations in PowerShell scripts that run
within WinPE, how to interact with the RPS API, and how to interface with the Controller.

Using Masked Credential

The previous section described how to create a password hash to be consumed as a Task Sequence Variable. The following syntax
is used to read the task sequence variable and use it to create a credential object for PowerShell to utilize within WinPE. Note the
name of the Task Sequence Variable in question is “Password” and the value is the hash that was created by following the steps
from the previous section.

$MS_ConfigMgr_Env = New-Object -ComObject Microsoft.SMS.TSEnvironment
$Password = $MS_ConfigMgr_Env.Value ("Password")
$Username = $Ms_ConfigMgr_Env.Value ("Username")
$cred = $Password | ConvertTo-SecureString -key(1..16)
credentials = New-Object System.Management.Automation.PSCredential ($UserName, $cred)

Impor ting R P S  AP I    

The following syntax is used to import the RPS API so that clients within WinPE can interact with the DAC and CMDB. Note, the



RPS API should be placed in the Deployment Share, under the Applications Folder, and then in its own folder called DAC.

$MS_ConfigMgr_Env = New-Object -ComObject Microsoft.SMS.TSEnvironment
$deploymentSharepath = $MS_ConfigMgr_Env.Value("DeploymentSharePath")
Import-Module "$deploymentSharePath\Applications\DAC\Rps.Api.dll"

B are Metal P rovisioning Approval 

On headless systems, administrators using RPS need a way to approve provisioning of client devices before their hard drives are
wiped and a new Operating System installed on the hard drive. The following set of steps give an example of how users utilizing
the RPS toolset would be able to perform an example approval process. The diagram below is an example overview of this
process.

C lient generates flag that it  is in  WinP E   

First, the client needs to set a flag for its Target Item that it has booted into WinPE, so that the controller is aware and can generate
the approval. For the first PowerShell script that runs in the Task Sequence, some kind of code similar to the following should be
used. In short, the client is querying the CMDB for its Target Item, and setting a property called “InWinPE” to $true.

# find the Client

$Client = Get-RpsTargetItem -Name $ComputerName

if($Client)
{
    $Client.IsActive = $true
    $Client.InWinPE = $true
    Update-RpsTargetItem -TargetItem $Client
}

Approval Runbook



The following is an example Runbook that is run by the Controller to check if a client has booted into WinPE, and if so, generate
an approval task for an administrator either Approve or Reject. Note, this should be the first step in the TaskMap associated with
the client device, so that no automations proceed on the client until this approval has been granted.

workflow New-BareMetalApprovalTask
{
    param
    {
        [parameter(Mandatory = $true)][string]$taskAssignmentId]
    }

# Disables serialization of objects in certain circumstances allowing for method calls.
    $PSDisableSerializationPreference = $true

    $taskassignment = Get-RpsTaskAssignment -Id $taskAssignmentId
    $targetitem = Get-RpsTargetItem -Id $taskassignment.TargetItemId

    if($targetitem.InWinPE -eq $true)
    {
        New-RpsTaskAssignmentUserAction -TaskAssignmentStatusId $taskAssignmentId
        $null = ($targetitem.ApprovalAssignmentId = "$taskAssignmentId")
        $null = Update-RpsTargetItem -TargetItem $targetitem
        $null = ($taskassignment.StatusMessage = "Approval Generated")
        $null = ($taskassignment.TaskState = "PendingUserAction")
        $null = Update-RpsTaskAssignment -TaskAssignment $taskassignment
    }
    else
    {
        $null = ($taskassignment.TaskState = "Retry")
        $null = ($taskassignment.StatusMessage = "Target Item is not in WinPE")
        $null = Update-RpsTaskAssignment -TaskAssignment $taskAssignment
    }
}

C lient Checks for Approval

Prior to the step in the Task Sequence where the client wipes its hard drive and lays down the new Operating System, it needs to
verify that approval has either been received or denied. To do this, a PowerShell script similar to the following example should be
created and placed on the Deployment Share, and then called from the task sequence.



# Obtain TS vars
$MS_ConfigMgr_Env = New-Object -ComObject Microsoft.SMS.TSEnvironment
$deploymentSharePath = $MS_ConfigMgr_Env.Value("DeploymentSharePath")

# Set Computer Name
$ComputerName = "$ClientComputerName"

# Import DAC
Import-Module "$deploymentSharePath\Application\DAC\Rps.Api.dll"

# find the client in CMDB
$Client = Get-RpsTargetItem -Name $ComputerName

# find the Task Assignment
$TaskAssignment = $Client.Properties | where Name -eq "ApprovalAssignmentId"
while($TaskAssignment)
{
    Start-Sleep -Seconds 5
    $Client = Get-RpsTargetItem -Name $ComputerName
    $TaskAssignment = $DCE.Properties | where Name -eq "ApprovalAssignmentId"
}
$TaskAssignment = $TaskAssignment.Value

# Monitor for Approval/Rejection
if ($TaskAssignment)
{
    do
    {
        Start-Sleep -Seconds 5
        $Status = (Get-RpsTaskAssignment -Id $TaskAssignment).TaskState
    }
    while (($Status -ne "Completed") -and ($Status -ne "Canceled"))

    if($Status -eq "Completed")
    {
        $DCE.InWinPE = $null
        Update-RpsTaskAssignment -TaskAssignment $DCE
    }

    if($Status -eq "Canceled")
    {
        $DCE.InWinPE = $null
        Update-RpsTaskAssignment -TaskAssignment $DCE
        wpeutil shutdown
    }
}

Glossary
TER M D EFINIT ION

ADK Assessment and Deployment Kit.

CMDB Configuration Management Database.

MDT Microsoft Deployment Toolkit.

RPS Rapid Provisioning System – A Toolset used to perform automations.

Runbook A “task” executed within TMS, may contain multiple workflows.



Runbook
Worker The TMS service that processes and executes Runbooks.

SCCM Microsoft System Center Configuration Manager.

TMS Task Management Service - hosts & runs runbooks, used by RPS.

TaskMap Identifies a set of steps, what order they should be performed in, and what target items those steps apply to.

Web Service A web-based receiver that enables connectivity from other applications.

WDS Windows Deployment Services – A windows service used to perform provisioning of clients.

WIM Windows Imaging Format – A Bootable file allowing a client to enter WinPE.

WinPE Windows Pre-Boot Environment – An Environment that runs in memory on the client that is used to provision the
client.

TER M D EFINIT ION

More Resources
RPS Building iPXE ROMs
Configuring ESXi VMs to Use iPXE



Configuring ESXi VMs to Use iPXE
Last updated on July 31, 2018.

Last Reviewed and Approved on PENDING REVIEW

Updating ESXi VM to Use iPXE
The following steps are required to update an ESXi VM to use iPXE:

1. Select the ESXi host.
2. Select the Configuration tab.

3. Right click on the datastore, the ROMs will be copied to and select Browse Datastore…

4. The Datastore Browser window will appear.

5. Create a folder if desired and select the Upload files to this datastore button to copy the iPXE ROMs to the ESXi host. The
above screen shot shows all supported iPXE ROMs copied to the iPxeRoms folder.

6. The following commands show PowerCLI being used to copy the iPXE ROMs to the ESXi host.

NOTE

The Update-VmxiPxeSetting.ps1 script will perform all the necessary actions to update the VMs network adapter with the iPXE rom. The only
parameters needed are the VM’s name (VmName), ESXi host’s name (VIServer), and credentials to connect to the ESXi host (Credential). The
script requires PowerCLI to be installed.





Example Update
Here is an example of updating VM3 to leverage an iPXE ROM: 

More Resources
RPS Building iPXE ROMs
RPS PXE Document



Using the Provisioning Service
Last updated on March 15, 2019.

Last Reviewed and Approved on PENDING REVIEW

Introduction
The RPS Provisioning Service is an HTTPS-based Web API hosted in IIS for use in brokering information from the RPS CMDB to a
pre-execution environment such as iPXE for installation of a defined image and configuration. For instance, iPXE can be
configured to "point to" the Provisioning Service which will return a boot script file for the MAC address requested. In this
manner, iPXE will download and boot the image according to the script which has been defined in the CMDB.

Provisioning Service reads of RPS CMDB data
The Provisioning Service uses the RPS CMDB to query for several entity types and records:

1. Target Item (i.e. MACAddress property on a NIC)
2. Target Item's parent (i.e. Computer that owns the NIC)
3. Resource Item that is of type BaseImage
4. Resource Assignment that assigns the BaseImage to the Target Item
5. The iPxeScript property on the BaseImage Resource Item
6. The {CustomProperty} property on the BaseImage Resource Item

Provisioning Service writes to CMDB
In order to facilitate Target Item retrieval later in the provisioning process (including scenarios where certain environments are
unable to perform requests using a URL query string with the MAC Address value), the Provisioning Service can take other inputs
to be saved as properties on the parent Target Item. For instance, when iPXE first requests with its MAC Address, it can also send
its SMBiosProductName, SMBiosCurrentSpeed, and provisionIPAddress, and potentially other key-value pairs. In this
manner, later queries (e.g. through a Runbook) for the target without the MAC Address may be possible to uniquely identify said
target.

Baremetal Provisioning Scenarios
Target found

The ideal scenario consists of all records and properties being found (e.g. NIC and iPxeScript on the BaseImage). When the NIC
Target Item, the Computer, and the Resource Assignment that assigns the BaseImage to the Computer are found, the
iPxeScript property of BaseImage will be returned from the service:

NOTE

The examples include screenshots from a local iisexpress instance. When it is deployed in the RPS solution on IIS, the server and port name will
ultimately differ.





In the case where the required records/properties are found, the iPxeScript stored in the CMDB is returned to the requesting
client, verbatim.

When the script is executed by iPXE, the environment will attempt to download and install the image from specified in the iPXE
Script.

Target found and addit ional query parameters added

If the Target Item is found, we can also specify additional parameters to add as properties to the parent Target Item. This example
shows a different browser and a different Target Found iPXE Script, and also shows where SMBiosProductName,
SMBiosCurrentSpeed, and provisionIPAddress where added to the CMDB through the Provisioning Service, and then a
newDynParam added as well to showcase dynamic parameters.

NOTE

The macAddress can be encoded with a %3A value in place of :. This is acceptable, as are : or -, so long as macAddress is explicitly specified in
the URL query string.

Target not found

If the MAC address is not found as a property of any Target Item, a default iPXE script will be returned to the client. This script
prints a message, will sleep for 30 s and then reboot:





D uplicate MAC found

If more than one of the same MAC address is found in the CMDB, a default iPXE script will be returned to the requesting client:

Resource Assignment cannot be determined

If there is not one (and only one) Resource Assignment, a default iPXE script will be returned to the requesting client:

Installation Provisioning Scenarios
The subsequent iPXE operations, the Provisioning Service can be used to receive another scripted file for unattended installations
which is commonly referred to as a Kickstart file. This script is to be hosted in the CMDB on the BaseImage, similar to the
iPxeScript. Since the environment in this phase of the installation is not equipped to use dynamic parameters (such as the
macAddress resolved by iPXE), the Provisioning Service will attempt to use the client's IP Address which ought to have been
saved to the Target Item (e.g. DCE) during the baremetal provisioning sequence.

If the custom script is already stored on the BaseImage,the ResourceAssignment has a ResourceStatus of Approved and the
provisionIpAddress on the Target Item matches that of the client, the client will receive this custom script, like:



NOTE

The Provisioning service can return any custom script. You can do this by calling https://localhost/api/installation/UnattendXml. This will return
the value of the property UnattendXml stored on the BaseImage.

Of course, the IP Address can be specified explicitly, like:

The GetAll action can also be used to see all Target Items with a provisionIpAddress:

Summary
The RPS Types have been updated to account for expected Computer definitions (e.g. MDA, DCE) as well as the Resource Item





type for BaseImage. These definitions help facilitate the creation of appropriate records in the CMDB, including the customization
of what is contained in the iPXE script. Without a matching Target Item (and parent Computer), and assigned Resource Item
(BaseImage) in the CMDB, the Provisioning Service will default to functionality which informs, then reboots the client.

More Resources
See the ProvisioningServiceDemo.ps1 in Utilities\Demos\Provisioning  for examples when using RPS



How to Add Runbooks to RPS
Last updated on March 30, 2021.

Last Reviewed and Approved on PENDING REVIEW

Purpose
The purpose of this document is to provide an overview of how to add new runbooks to RPS.

Runbook Pre-Requisites
The following items are required to create a valid runbook:

1. The file must end in .ps1 .

2. The file name cannot be a duplicate of another runbook.

3. The runbook script must have a mandatory TaskAssignmentId parameter.

[Parameter(Mandatory = $true)]
[System.Guid]
$TaskAssignmentId

4. Upon successful completion, Task Assignment status should update to "Completed" status using the 
Update-RpsTaskAssignment  PowerShell snippet.

Update-RpsTaskAssignment -TaskAssignment $taskAssignment -TaskState Completed -StatusMessage $message

NOTE

For more information on other available statuses, see Task Assignment States.

Add a New Runbook
Use the following steps to add a new runbook:

1. Create a runbook script in PowerShell. For more information, see Authoring RPS Runbooks.

2. Add the runbook file to the content store Runbooks folder.

NOTE

The default runbook directory is C:\ContentStore\Runbooks . However, this location can be changed and may be a different directory.

To get the current location of the runbook directory, open PowerShell and run this Get-RpsStorageValue  PowerShell snippet:

Get-RpsStorageValue -Key "DefaultRunbookFolder"

See How to Get and Set the Default Runbook Folder for more information.

3. On the machine where the runbook should be added, open PowerShell as an Administrator. Run the New-RpsTaskItem
PowerShell snippet. This will create a new Task Item for RPS.

$taskItem = New-RpsTaskItem -WorkflowName 'workflowItem2' -IsActive $true







4. Create a new Task Assignment using the New-RpsTaskAssignment  PowerShell snippet. This will assign the Task Item to the
target that the runbook is to be applied.

$taskAssign = New-RpsTaskAssignment -TaskItem $taskItem -TargetItem $targetItem1



How to Get and Set the Default Runbook Folder
Last updated on January 8, 2021.

Last Reviewed and Approved on PENDING REVIEW

Purpose
The purpose of this document is to provide an overview of how the default runbook folder is installed and manually changed.

Runbook Folder Installation (Default)
The default runbook folder is automatically set during RPS Installation. The default directory is C:\ContentStore\Runbooks .

G et Current Location of the Runbook Folder

By using the Get-RpsStorageValue  command in PowerShell, you are able to get the current location of the runbook directory.

Get-RpsStorageValue -Key "DefaultRunbookFolder"

Manual Modificat ion of the Runbook Folder

By using the Set-RpsStorageValue  command in PowerShell, you are able to change the runbook directory.

Set-RpsStorageValue -Key "DefaultRunbookFolder" -Value "[Full path of the folder you wish to use]"



How to Modify Runbooks in RPS
Last updated on March 30, 2021.

Last Reviewed and Approved on PENDING REVIEW

Purpose
The purpose of this document is to provide an overview of how to modify existing runbooks in RPS.

Modify an Existing Runbook
Use the following steps to modify an existing runbook:

1. Use File Explorer to find the file on disk.

NOTE

The default runbook directory is C:\ContentStore\Runbooks . However, this location can be changed and may be a different directory.

To get the current location of the runbook directory, open PowerShell and run this Get-RpsStorageValue  PowerShell snippet:

Get-RpsStorageValue -Key "DefaultRunbookFolder"

See How to Get and Set the Default Runbook Folder for more information.

2. Open the file in your preferred text editor.

NOTE

This file can then be modified and saved. RPS will run the new version when the runbook executes.

3. Open PowerShell as an Administrator to update the runbook assignment's status using the following steps:

1. Run Get-RpsTaskItem  to get the Task Item.

$task = Get-RpsTaskItem -WorkflowName name

2. Run Get-RpsTaskAssignment  to get the Task Assignment for a designated Target Item and current Task Item.

$assignment = Get-RpsTaskAssignment -TargetItem $targetItem -TaskItem $task

3. Run Update-RpsTaskAssignment  to update the Task Assignment to a "Ready" Task State.

Update-RpsTaskAssignment -TaskAssignment $assignment -TaskState Ready







How to Remove Runbooks From RPS
Last updated on March 30, 2021.

Last Reviewed and Approved on PENDING REVIEW

Purpose
The purpose of this document is to provide an overview of how to remove existing runbooks from RPS.

Remove a Runbook
Use the following steps to remove an existing runbook:

1. Open PowerShell as an Administrator to remove Task Assignments and Task Items using the following steps:

1. Run Get-RpsTaskItem  to get the desired Task Item for a given workflow.

$task = Get-RpsTaskItem -WorkflowName name

2. Remove all Task Assignments that use the Task Item.

Get-RpsTaskAssignment -TaskItem $task | Remove-RpsTaskAssignment

3. Run Remove-RpsTaskItem  to remove the Task Item.

Remove-RpsTaskItem -Id $task.Id

2. Locate the runbook file in the content store Runbooks folder and delete the file.

NOTE

The default runbook directory is C:\ContentStore\Runbooks . However, this location can be changed and may be a different directory.

To get the current location of the runbook directory, open PowerShell and run this Get-RpsStorageValue  PowerShell snippet:

Get-RpsStorageValue -Key "DefaultRunbookFolder"

See How to Get and Set the Default Runbook Folder for more information.





Task Management Service (TMS) Settings
Last updated on March 30, 2021.

Last Reviewed and Approved on PENDING REVIEW

NOTE

Also known as RPS Phyr.

Purpose
The purpose of this document is to provide an overview of the available settings in TMS.

Figure 1: TMS App Config.

Rules
Unless otherwise stated, TMS settings are located in its own configuration file, Rps.TaskManagement.exe.config . If a setting does
not exist in the TMS configuration file, TMS will use an RPS setting information with the same key, instead.

The TMS configuration file is found in the same directory as Rps.TaskManagement.exe . By default, located at 
C:\ContentStore\Rps\TaskManagement .

Configuration Glossary
Sett ings

S E T TING  K EY D EFINIT ION D EFAU LT

DefaultRunbookFolder Location TMS can find the runbooks.
Set at RPS installation. By default,
located at 
C:\ContentStore\Runbooks .

TMSLoggingLevel See Logging Levels. Information

MaxRetries
Global maximum number of retries for all jobs. Individual jobs do not have
a determined retry, but most runbooks will retry themselves, when
appropriate.

1

StorageType Inherit, Memory, SqlServer, PostgreSql Inherit

PhyrConnectionString Database connection string. Used by Hangfire to connect to a database. N/A (Inherited from RPS)

DefaultDb Database used to store active TMS job information. TMS

TMS Logging Levels





LEVEL D EFINIT ION

Verbose Extra processing about TMS, Phyr, and the underlying job processing.

Information (Recommended / Default) General information about the service and job processing.

Warning Background job is delayed or throwing an error, but may be retried.

Error Background job is unable to perform due to an error that cannot be resolved.

Fatal Fatal error causing the system to be unable to continue processing any jobs. This level is not used in Phyr but may be used in
underlying processes. This level is not likely to produce anything.



RPS Tasking Guide
Last updated on August 26, 2021.

Document Status: Document Developer Quality Pending.

Rapid Provisioning System (RPS) Tasking is a feature of RPS that provides a controlled, predictable method to automate complex
tasks in correct sequence. A working knowledge of the entities and architecture of RPS is recommended prior to reading this
guide.

Introduction
This guide provides an overview of the RPS Tasking architecture, a list of supporting documentation, RPS task assignment
creation, and examples in PowerShell code.

Overview
The center of RPS Tasking capabilities is a Task Assignment. A task assignment is the assignment of the smallest unit of work, a
Task Item, to a single Target Item.

To perform a complex sequence of steps, RPS uses a Task Map, which describes: a set of steps, what order they should be
performed in, and what target items those steps apply to. The Task Map is the blueprint of the process or orchestration. Some
examples of Task Maps include: provisioning a new server stack, performing complex patching, or maintenance routines such as
issuing new certificates.

The result of assigning a task map to a target item is a Task Map Assignment, which is a set of task assignments that together,
complete the complex process. A major benefit of RPS is the flexibility of Task Maps, which allows Administrators to author
simple, reusable PowerShell runbooks, and compose them together into a complex process across multiple devices.

Glossary
The following terms are used in the Tasking Guide:

TER M D ES CR IPTION ALIAS ES  (D EP REC ATED * )

Direct
Assignment The assignment of a task item directly to a target, without the use of a Task Map.

Map
Assignment

The assignment of a task map to a target and its descendants. The result is a set of Task
Assignments that together make up a complex orchestration.

TaskMapAssignment,
Orchestration

Runbook PowerShell script which runs a simple task. Usually run in TMS.

Step Identify a single step within a Task Map. Task Map Step, TaskMapStep,
TaskMapDefinition*

Step
Dependency A dependency between a step and its dependent (previous) step. TaskMapStepDependency,

TaskMapDefDependency*

Step Filter A filter to narrow what target items the step applies to. TaskMapStepFilter,
TaskMapDefFilter*

Target Item A device which is the target of a task item or task map. TargetItem, Target



Task
Assignment Assignment of a task item to a target. Corresponds to a single job in TMS. TaskAssignment, Assignment

Task Item Identifies a task (runbook). TaskItem, Task

Task
Management
Service

Used by RPS to run RPS Task Assignments. TMS

Task Map Identifies a set of steps, what order they should be performed in, and what target items
those steps apply to. TaskMap, Map

TER M D ES CR IPTION ALIAS ES  (D EP REC ATED * )

Target Item User Actions
The states in which actions on a Target Item may be classified are detailed below.

S TATE D ES CR IPTION CR ITER IA

Pending An action on a Target Item that is
Pending. Task Assignment(s) assigned to the Target Item are Pending user action.

Optional An action on a Target Item that is
Optional.

Task Assignment(s) assigned to the Target Item have a state of Not Ready and are
flagged as Optional.

Retry An action on a Target Item that is
Retryable. Task(s) assigned to the Target Item have a state of Canceled or ErrorStop.

Task Map Authoring
A Task Map is a reusable blueprint for a set of steps that need to be performed on one or more devices. The Rps-Api module and
cmdlets allow a user to quickly create complex task maps.

Example:  C reate a Task Map 

This example demonstrates the method for creating a Task Map using the Rps-Api module. The example is a Task Map which first
configures a hypervisor, and then creates a new VM.

S tep 1 :  C reate Task Map  

Provide the Name and Type.

$map = New-RpsTaskMap -Name "Provision-VMs" -Type "Provision"

S tep 2:  C reate Task I tems   

Next, create a Task Item for the runbooks that do the work.

$task1 = New-RpsTaskItem -WorkflowName "Configure-HyperV"
$task2 = New-RpsTaskItem -WorkflowName "New-VirtualMachine"

S tep 3:  C reate S teps   

Next, create a step for each of the Task Items. You can specify the Task Item using the "RunbookName", "TaskItem", or
"TaskItemId" parameter.



$step1 = New-RpsTaskMapStep -TaskMap $map -RunbookName "Configure-HyperV" -TargetItemType "Computer"
$step2 = New-RpsTaskMapStep -TaskMap $map -TaskItem $task1 -TargetItemType "Computer"
$step3 = New-RpsTaskMapStep -TaskMapId $map.Id -TaskItemId $task2.Id -TargetItemType "VirtualMachine"

NOTE

The TargetItemType parameter is required and is used to determine which type of Target Item to assign to. To use more advanced filtering, see
Step 5: Create Filters, below.

S tep 4:  C reate D ependencies   

Create a dependency between $step1  and $step2 . RPS uses dependencies to evaluate when a task assignment is ready to be
run. In this example, $step2  depends on $step1 , so it will run only after $step1  has completed.

New-RpsTaskMapStepDependency -PreviousStep $step1 -Step $step2

S tep 5:  C reate Filters  

Use Step Filters to further restrict what Target Items a Step applies to. For our example, we may only want to provision Hyper-V
VMs, so we'll make sure the Target VMs have a property called "HostType" with a value of "HyperV".

New-RpsTaskMapStepFilter -TaskMapStep $step2 -PropertyName "HostType" -PropertyValue "HyperV"

Example:  S implified Task Map 

The example above can be simplified to allow easier Task Map creation. Here is an example of the same Task Map, simplified.

$map = New-RpsTaskMap -Name "Provision-VMs" -Type "Provision"
$step1 = New-RpsTaskMapStep -TaskMap $map -RunbookName "Configure-HyperV" -TargetItemType "Computer"
$step2 = New-RpsTaskMapStep -TaskMap $map -RunbookName "New-VirtualMachine" -TargetItemType "VirtualMachine" 
`
                            -Dependencies @($step1) -Filters @{ HostType = "HyperV" }

NOTE

The example assumes that the Task Items were created. Typically, Runbooks will be authored and imported into RPS as Task Items before Task
Maps are created.

Target Matching

When a Task Map is assigned to a Target Item, each Step is compared to the Target and its descendant items. By default, RPS
doesn't enforce that a step matches a target. By default, RPS also allows a Step to match multiple Target Items, though sometimes
the desired behavior is to match a single item only.

To designate a Step as required, use the optional parameter, IsTargetRequired .

To designate a Step to allow or prevent multiple matching targets, use the optional parameter, AllowMultipleTargets .

WARNING

A Task Map will fail if it is assigned to the same Target Item multiple times while AllowMultipleTargets = false , because this
configuration does not allow multiple targets.

Example:  Required Target I tem, No Mult iples  

In our sample Task Map, we probably want the Configure-HyperV  step to apply to a single Computer hosting Hyper-V. We will
change the first Step to require a Target and disallow multiple matches. We won't change the second step, meaning that this Task









Map will work for a Computer with zero or more VMs.

$map = New-RpsTaskMap -Name "Provision-VMs" -Type "Provision"
$step1 = New-RpsTaskMapStep -TaskMap $map -RunbookName "Configure-HyperV" -TargetItemType "Computer" -
IsTargetRequired $true -AllowMultipleTargets $false
$step2 = New-RpsTaskMapStep -TaskMap $map -RunbookName "New-VirtualMachine" -TargetItemType "VirtualMachine" 
-Dependencies $step1 -Filters @{ HostType = "HyperV" }

Task Map Assignment
After creating a Task Map, assign it to a Target Item to create a Task Map Assignment. The map assignment will contain one or
more Task Assignments that apply to the Target Item and its descendants.

NOTE

In v2.2 and earlier, RPS only allowed Task Maps to be assigned to root Target Items (Containers).

As of v2.3, RPS allows a Task Map to be assigned to any Target Item, allowing more flexibility in how Target Items are structured, and more re-
use of Task Maps and Runbooks. This has the side effect that $taskMap.GetContainers() may no longer retrieve the actual targets of the Task
Map.

Assign Task Map to Target I tem

The example below will create a Task Map, a Target Computer with 2 VMs, and assign the Map to the Target.

# Create Task Map
$map = New-RpsTaskMap -Name "Provision-VMs" -Type "Provision"
$step1 = New-RpsTaskMapStep -TaskMap $map -RunbookName "Configure-HyperV" -TargetItemType "Computer" -
IsTargetRequired $true -AllowMultipleTargets $false
$step2 = New-RpsTaskMapStep -TaskMap $map -RunbookName "New-VirtualMachine" -TargetItemType "VirtualMachine" 
-Dependencies $step1 -Filters @{ HostType = "HyperV" }

# Create Computer & 2 VMs
$server = New-RpsTargetItem -Type Computer -Name "Server-01"
$vm1 = New-RpsTargetItem -ParentItem $server -Type VirtualMachine -Name "VM-01" -Properties @{ HostType = 
"HyperV" }
$vm2 = New-RpsTargetItem -ParentItem $server -Type VirtualMachine -Name "VM-02" -Properties @{ HostType = 
"HyperV" }

# Assign Task Map to Computer
New-RpsTaskAssignment -TaskMap $map -TargetItem $server

The result of this assignment is a Map Assignment consisting of 3 Task Assignments.

S TEP TAS K TAR G E T D EPEND ENCIES

1-1 Configure-HyperV Server-01

2-1 New-VirtualMachine VM-01 Step 1-1

2-2 New-VirtualMachine VM-02 Step 1-1

Assign Task Map to Target G roup

A Task Map can also be assigned to a Target Group. The Target Group is used simply as a collection of related Target Items. The
assignment will result in a new Map Assignment to each Target in the Group, and each Target will be validated separately.

The example below will create a Task Map, a Target Group with 2 Servers, and assign the Map to the Group.





# create a server with 2 VMs
$vmProps = @{ Type = "VirtualMachine"; Properties = @{ HostType = "HyperV" } }
$server = New-RpsTargetItem -Type Computer -Name "Server01"
$vm1 = New-RpsTargetItem -ParentItem $server -Name "VM-01" @vmProps
$vm2 = New-RpsTargetItem -ParentItem $server -Name "VM-02" @vmProps

# create a server with 1 VM
$server2 = New-RpsTargetItem -Type Computer -Name "Server02"
$vm3 = New-RpsTargetItem -ParentItem $server2 -Name "VM-03" @vmProps

# create a group with both servers
$group = New-RpsTargetGroup -Name "Servers" -Type "Server"
$group.AddChildren($server, $server2)

Update-RpsTargetGroup -TargetGroup $group

# assign the map to the group
New-RpsTaskAssignment -TaskMap $map -TargetGroup $group

Assign a Task Map to run on the Local Node

By default, Task Assignments will be executed on the Target's Node. Optionally, a Task Map can also be assigned to a Target but
executed on the Local (current) Node, instead of the Target's Node. This may be useful when building a child Node from a parent
Node. The work to provision the child Node's Virtual Machines will happen locally (on the parent node), but the target computers
are assigned to the child node.

Assign a Task Map to a Target and run on the Local Node by using the -RunOnLocalNode  switch with the 
New-RpsTaskAssignment  cmdlet.

Example:  Assign a Task Map to Child Target,  but run on Parent Node 

# Create Task Map
$map = New-RpsTaskMap -Name "Provision-VMs" -Type "Provision"
$step1 = New-RpsTaskMapStep -TaskMap $map -RunbookName "Configure-HyperV" -TargetItemType "Computer" -
IsTargetRequired $true -AllowMultipleTargets $false
$step2 = New-RpsTaskMapStep -TaskMap $map -RunbookName "New-VirtualMachine" -TargetItemType "VirtualMachine" 
-Dependencies $step1 -Filters @{ HostType = "HyperV" }

# Create Computer & 2 VMs
$server = New-RpsTargetItem -Type Computer -Name "Server-01" -Node $childNode
$vm1 = New-RpsTargetItem -ParentItem $server -Type VirtualMachine -Name "VM-01" -Properties @{ HostType = 
"HyperV" }
$vm2 = New-RpsTargetItem -ParentItem $server -Type VirtualMachine -Name "VM-02" -Properties @{ HostType = 
"HyperV" }

# Assign Task Map to Computer, but run on current Node
New-RpsTaskAssignment -TaskMap $map -TargetItem $server -RunOnLocalNode

Scheduled Task Assignments

RPS v2.3 supports the ability to schedule task assignments. These task assignments will not be executed until the scheduled date.

To schedule a Task Map Assignment, use the optional parameter, StartDate .

Example:  Scheduled Task Map Assignment

New-RpsTaskAssignment -TaskMap $map -TargetItem $server -StartDate "8/27/18 16:00"

Assignment Validation

When assigning a Task Map to a Target Item, there may be some steps that don't meet the Task Map's requirements. For example,
if a Step requires a matching Target but none is found, the assignment will fail, and an error returned to the user.



I nvalid Targets

This code:

# Assign Task Map to VM1
New-RpsTaskAssignment -TaskMap $map -TargetItem $vm1

Will result in this message:

WARNING: Error assigning Task Map: Provision-VMs to Container: VirtualMachine-VM-01

Step requires a matching target item.

D uplicate Assignments

RPS does not allow the same Task Map to be assigned to the same Target Item multiple times.

This code:

# Assign Task Map to Server01 Twice
New-RpsTaskAssignment -TaskMap $map -TargetItem $server
New-RpsTaskAssignment -TaskMap $map -TargetItem $server

Will result in this message:

WARNING: Error assigning Task Map: Provision-VMs to Container: Computer-Server01

Container is already assigned to the Task Map.

NOTE

The restriction of duplicate assignments is largely in place for backwards-compatibility reasons and will likely be removed from RPS in the future.
Conceptually, a Task Map represents a process that may run multiple times on the same target devices. For now, the two alternatives are to
clone a task map in order to run it again or reset the task map assignment so it will run again.

D ependency Scope

If we change the "Provision-VMs" Task Map to include a third step which makes sure the VM is started and waits for the OS to
boot, it will have a dependency on Step 2.

$map = New-RpsTaskMap -Name "Provision-VMs" -Type "Provision"
$step1 = New-RpsTaskMapStep -TaskMap $map -RunbookName "Configure-HyperV" -TargetItemType "Computer" `
                            -IsTargetRequired $true -AllowMultipleTargets $false
$step2 = New-RpsTaskMapStep -TaskMap $map -RunbookName "New-VirtualMachine" -TargetItemType "VirtualMachine" 
-Dependencies $step1
$step3 = New-RpsTaskMapStep -TaskMap $map -RunbookName "Start-VirtualMachine" -TargetItemType 
"VirtualMachine" -Dependencies $step2

If we assign that map to our server and 2 VMs, the following Task Assignments will be created:

S TEP TAS K TAR G E T D EPEND ENCIES

1-1 Configure-HyperV Server-01

2-1 New-VirtualMachine VM-01 Step 1-1

2-2 New-VirtualMachine VM-02 Step 1-1





3-1 Start-VirtualMachine VM-01 Steps 2-1, 2-2

3-2 Start-VirtualMachine VM-02 Steps 2-1, 2-2

S TEP TAS K TAR G E T D EPEND ENCIES

Looking at the dependencies, you can see that the VM-01 won't start (Step 3-1) until VM-02 has been created (Step 2-2). Likewise,
VM-02 waits on VM-01. If we add more Steps that apply to VMs and more VMs to our Server, we'd be creating many
dependencies that aren't necessary.

Example 1 :  Use Scope to narrow D ependencies  

Instead of creating dependencies to every target that matched a previous step, we can specify a narrower Scope when we define a
Dependency. In RPS v2.3, we've included a new Scope  parameter when creating Dependencies.

$map = New-RpsTaskMap -Name "Provision-VMs" -Type "Provision"
$step1 = New-RpsTaskMapStep -TaskMap $map -RunbookName "Configure-HyperV" -TargetItemType "Computer" -
IsTargetRequired $true -AllowMultipleTargets $false
$step2 = New-RpsTaskMapStep -TaskMap $map -RunbookName "New-VirtualMachine" -TargetItemType "VirtualMachine" 
-Dependencies $step1
$step3 = New-RpsTaskMapStep -TaskMap $map -RunbookName "Start-VirtualMachine" -TargetItemType 
"VirtualMachine"
New-RpsTaskMapStepDependency -Step $step3 -PreviousStep $step2 -Scope Self

Example 2:  Use Scope in-line

NOTE

Scope can be added to a TaskMapStep  as a TaskMapStep  parameter. The scope will act on the dependency parameters supplied. The scope
will default to target if not specified.

New-RpsTaskItem -WorkflowName "Configure-HyperV"
New-RpsTaskItem -WorkflowName "New-VirtualMachine"
New-RpsTaskItem -WorkflowName "Start-VirtualMachine"

$map = New-RpsTaskMap -Name "Provision-VMs" -Type "Provision"
$step1 = New-RpsTaskMapStep -TaskMap $map -RunbookName "Configure-HyperV" -TargetItemType "Computer" -
IsTargetRequired $true -AllowMultipleTargets $false
$step2 = New-RpsTaskMapStep -TaskMap $map -RunbookName "New-VirtualMachine" -TargetItemType "VirtualMachine" 
-Dependencies $step1 -Scope Self
$step3 = New-RpsTaskMapStep -TaskMap $map -RunbookName "Start-VirtualMachine" -TargetItemType 
"VirtualMachine"

If we assign that map to our server and 2 VMs, the following Task Assignments will be created:

S TEP TAS K TAR G E T D EPEND ENCIES

1-1 Configure-HyperV Server-01

2-1 New-VirtualMachine VM-01 Step 1-1

2-2 New-VirtualMachine VM-02 Step 1-1

3-1 Start-VirtualMachine VM-01 Step 2-1

3-2 Start-VirtualMachine VM-02 Step 2-2





Table:  D ependency Scopes 

The following Scopes are supported:

S COPE D ES CR IPTION

Target Indicates that dependencies will be to the Target of the Task Map, which is the assigned Target Item and all its descendants. This is
the default value and the behavior of RPS prior to v2.3.

Parent Indicates that dependencies will be to the Parent Target Item of the previous step and any descendants.

Self Indicates that dependencies will be to the Target Item of the previous step and any descendants.

Assignment Code Examples
Assign Task I tem to Target I tem for Execution 

Both the Task Item and the Target Item objects must exist prior to assigning a Task Item to a Target Item. The following example
shows the method of assignment. You can add a StartDate  to the task assignment so Master-Controller won't start execution
until the DateTime has been met.

$taskAssignments = New-RpsTaskAssignment -TaskItem $AlwaysCompletes -TargetItem $targetItem -StartDate (Get-
Date).AddMinutes(15)

Assign Task Map to Target I tem for Execution

Both the Task Map and the Target Item objects must exist prior to assigning a Task Map to a Target Item. The following example
shows the method of assignment.

$taskAssignments = New-RpsTaskAssignment -TaskMap $TaskAssignmentTaskMap -TargetItem $targetItem

Assign Task I tem to Target G roup for Execution 

Both the Task Item and the Target Group objects must exist prior to assigning a Task Item to a Target Group. The following
example shows the method of assignment.

$taskAssignments = New-RpsTaskAssignment -TaskItem $AlwaysCompletes -TargetGroup $targetGroup

Assign Task Map to Target G roup for Execution

Both the Task Map and the Target Group objects must exist prior to assigning a Task Map to a Target Group. The following
example shows the method of assignment.

$taskAssignments = New-RpsTaskAssignment -TaskMap $TaskAssignmentTaskMap -TargetGroup $targetGroup

More Resources
RPS Software Design
RPS Task Assignment Diagram
Authoring RPS Runbooks



RPS Task Assignment Diagram
Last updated on January 13, 2021.

Last Reviewed and Approved on PENDING REVIEW

More Resources
RPS Software Design
RPS Tasking Guide
Authoring RPS Runbooks



Authoring RPS Runbooks
Last updated on January 13, 2021.

Last Reviewed and Approved on PENDING REVIEW

RPS is the Rapid Provisioning System. Runbooks are PowerShell scripts and workflows that RPS will execute with Task
Management Service (TMS).

RPS Runbooks are PowerShell runbooks designed to run within the context of RPS. In general, RPS runbooks provide concise,
reusable functionality, and use the Rps-Api PowerShell module to access and update the RPS Configuration Management
Database (CMDB) data.

The terms "Runbook", "Workflow," and "Task Item" are all used interchangeably within RPS to refer to an RPS runbook. The
assignment of a single runbook to a Computer or Target for execution is called a Task Assignment, which is executed as one job
in TMS. The Task Assignment is the smallest unit of work in RPS, and its status is tracked in the RPS CMDB.

Glossary
The following are common terms used within RPS, Runbooks, and Task Automation.

TER M D EFINIT ION

CMDB RPS [Configuration Management] Database.

Map
Assignment

The assignment of a task map to a target and its descendants. The result is a set of Task Assignments that together make
up a complex orchestration.

RPS Rapid Provisioning System.

Rps-Api PowerShell Module used to access and manipulate RPS configuration and task data.

Runbook PowerShell script which runs a simple task, usually run in TMS.

Step Identify a single step within a Task Map.

Target Item A device which is the target of a Task Item or Task Map.

Task
Assignment Assignment of a Task Item to a target. Corresponds to a single job in TMS.

Task Item Identifies a task (runbook).

TMS Task Management Service - hosts & runs runbooks, used by RPS.

Task Map Identifies a set of steps, what order they should be performed in, and what target items those steps apply to.

Task Assignment States
The following table defines the Task Assignment states used by RPS. Within PowerShell, the available states can be accessed via
the $Rps.TaskStates  variable.



TER M D EFINIT ION

Assigned Task Assignment is created. When TMS creates a job, Sync builds a new Task Assignment.

Canceled Task Assignment was stopped, either from TMS or manually, and processing of Orchestration may stop.

Completed Task Assignment is complete, and processing of other Task Assignments in the Orchestration will continue.

ErrorContinue Task Assignment encountered an error, but processing of Orchestration will continue.

ErrorStop Task Assignment failed and processing of Orchestration should stop.

None Internal system default; the task state has not been set.

NotReady Task Assignment is new or is waiting on other jobs to complete, and not ready to be executed.

PendingUserAction Task Assignment requires user approval before Orchestration can continue. See User Approvals section.

Ready Task Assignment is ready to be started, and will be started by TMS.

Removed Task Assignment contains a target that is being deleted.

Retry Task Assignment should be retried due to a failure. See Retry section.

Running Task Assignment was started as a job in TMS (or Direct) and is currently executing.

Hosting Runbooks in TMS vs. Direct Execution
A full instance of RPS (RPS Node) includes the CMDB as a SQL database and an instance of TMS to host and execute RPS
runbooks.

With RPS, some of the functionality that TMS uses is exposed directly via the Rps-Api module, so that Task Assignments and Task
Map Assignments (Orchestrations) can be executed directly in PowerShell. This is useful for an initial RPS Install process, where
TMS may not be available. It also helps for developing, testing, and troubleshooting runbooks. See documentation around the 
Invoke-RpsTaskAssignment  and Invoke-RpsTaskMapAssignment  cmdlets for more information.

RPS Runbook Guidance
The following are the three primary guidelines for authoring RPS Runbooks:

1. Runbooks are PowerShell scripts saved as .ps1  files in the \Runbooks  folder by default, using the Verb-Noun naming
convention.

NOTE

The Runbooks folder location is user changeable. The current Runbook folder location can be determined with the following PowerShell
snippet:

Get-RpsStorageValue -Key "DefaultRunbookFolder"

See: How to Get and Set the Default Runbook Folder

2. Runbooks contain a single mandatory parameter, [guid] $TaskAssignmentId , to identify the Task Assignment.
3. Runbooks use the Rps-Api to access and update CMDB data, log important information, and update Task Assignment State.





Example Runbook

The following example is a simplified version of the Wait-Random.ps1  runbook, which can be used for guidance as well as sample
task execution.

<# ... #>
[CmdletBinding()]
param
(
    [Parameter(Mandatory = $true)]
    [System.Guid]
    $TaskAssignmentId
)

#Requires -Modules Rps-Api

# Load Task Assignment and Target Item
$taskAssignment = Get-RpsTaskAssignment -Id $TaskAssignmentId
$workflowName = $taskAssignment.TaskItem.WorkflowName
if (-not $taskAssignment)
{
    Write-RpsLogItem @LogError -MessageTemplate $LoggingEvents.TaskAssignmentNotFound -Properties 
($TaskAssignmentId, $workflowName)
    throw "Task Assignment not loaded properly."
}

$targetItem = $taskAssignment.TargetItem
Write-RpsLogItem @LogInformation -MessageTemplate $LoggingEvents.StartingRunbook -Properties $workflowName, 
$TaskAssignmentId
Update-RpsTaskAssignment -TaskAssignment $taskAssignment -TaskState $Rps.TaskStates.Running -StatusMessage 
"$workflowName is running on $($targetItem.Name)"

# Generate a random sleep time from 1-5 sec
$wait = Get-Random -Min 1 -Max 5
$waitMessage = 'Assignment: {TaskAssignmentId} on {TargetItem} waiting for {Wait} sec'
$logProps = @($TaskAssignmentId, $targetItem.Name, $wait)
Write-RpsLogItem -Level Information -Component Master -MessageTemplate $waitMessage -Properties $logProps

# Sleep
Start-Sleep -s $wait

Update-RpsTaskAssignment -TaskAssignment $taskAssignment -TaskState $Rps.TaskStates.Completed -StatusMessage 
"Completed"

Updating Task Assignment S tate from a Runbook

To reduce boilerplate code, RPS will manage the Task Assignment's state as follows:

1. When a Task Assignment is started (via TMS or Direct), its TaskState  is automatically set to Running.
2. When a Task Assignment is completed (via TMS or Direct), and its TaskState  is Running, the TaskState  is automatically

set to Completed.
3. When a Task Assignment fails (via TMS or Direct), and its TaskState  is Running, the TaskState  is automatically set to

ErrorStop.

In the example runbook, notice that the TaskState  is never updated to Running or Completed.

To set the state manually, for error handling or a custom workflow, use the Update-RpsTaskAssignment  cmdlet and the common
Task States listed above.

Example:  Manually set S tate 

This example manually sets the State to ErrorContinue if an error occurs in the try  block:



try
{
    # do work here
}
catch
{
    # catch error but allow orchestration to continue
    # additional logging or error handling here
    Update-RpsTaskAssignment -TaskAssignment $taskAssignment -TaskState $Rps.TaskStates.ErrorContinue -
Message 'An error occurred in non-critical process.'
}

Logging from a Runbook

RPS supports structured logging via the Write-RpsLogItem  cmdlet. See the Rps-Api documentation for full description and
examples.

For RPS Runbooks, it's important to understand how to associate information to the Task Assignment for diagnostics or
telemetry.

To associate log data with an executing Task Assignment, you must supply a formatted message template with named
replacement tokens and the Task Assignment's Id.

Example:  Logging I nformation to the Task Assignment 

This example, from the Wait-Random  runbook, shows how to properly log information to a Task Assignment from a runbook.
Notice the template is a string with replacement tokens and the properties are simply an object array to associate to the tokens in
the template.

# Generate a random sleep time from 1-5 sec
$wait = Get-Random -Min 1 -Max 5
$waitMessage = 'Assignment: {TaskAssignmentId} on {TargetItem} waiting for {Wait} sec'
$logProps = @($TaskAssignmentId, $target.Name, $wait)
Write-RpsLogItem -Level Information -MessageTemplate $waitMessage -Properties $logProps

Advanced Runbook Guidance
1. Establishing a secure connection to a remote computer
2. Scheduled/Recurring Task Assignments
3. Retrying Task Assignments
4. Require User Approval
5. Additional Parameters

Connect to Target Computer

Many Runbooks will need to connect to the Target (Computer) to perform their duty. To connect, you must get the appropriate
credential and then establish a secure connection. In RPS Runbooks, use the Get-RpsCredential  to load the right credential for
the target. Then use New-SecureSession  from Rps-Api to make the connection.



#Requires -Modules Rps-Api

# Load assignment and target
$assignment = Get-RpsTaskAssignment -Id $TaskAssignmentId
$target = $assignment.TargetItem

try
{
    # Retrieve LocalAdmin credentials for target computer
    $localAdmin = Get-RpsCredential -TargetItem $target -Role 'LocalAdmin'

    # Establish connection to target
    $session = New-SecureSession -IPAddress $target.IPAddress -Type PsSession -Credential $localAdmin -OSType 
$target.OSType

    # Do work on target
}
finally
{
    if ($session)
    {
        # Clean up connection
        Remove-PSSession -Session $session
    }
}

Scheduled / Recurring Task Assignments

RPS supports scheduling of Task Assignments and Map Assignments. See the RPS Tasking Guide for examples of scheduling new
Map Assignments and Task Assignments.

To have a Task Assignment repeat or recur, manually adjust the StartDate  and set TaskState  to Ready and RPS will run the
Task Assignment again.

CAUTION

To prevent TMS from inadvertently completing a recurring task, make sure to clear the PhyrJobId when resetting the state.

Example:  Set Task Assignment to Recur every 15 minutes

Use the following code in a runbook to have the Task Assignment recur:

TIP

To set a limit on execution counts, add a custom property to the TaskAssignment and logic to update it after each run.

$taskAssignment.StartDate = (Get-Date).AddMinutes(15)
$taskAssignment.TaskState = $Rps.TaskStates.Ready
$taskAssignment.PhyrJobGuid = $null
Update-RpsTaskAssignment $taskAssignment

Retry Failed Task Assignments

RPS considers the Retry state similar to Ready. The only difference is that Retry indicates that the Task Assignment failed and is
executing again, instead of running for the first time.

Starting with RPS v2.3.2 there is limited support for automatic retries, which was added to support some RPS Install features. To
use an automatic retry, set a RetryCount  property on the Task Assignment. If the Task Assignment fails, RPS will automatically
retry it and decrement the RetryCount  until all retries have been attempted.







This behavior can be simulated in runbooks and may be promoted to a built-in feature in RPS and TMS in a future release. This
would also include a RetryCount  option in the UI or PowerShell when designing a Task Map.

Example:  Sett ing RetryCount proper ty on Task Assignment  

# Remove -TaskMap parameter to get array of all assignments of $taskItem to $targetItem
$taskAssignment = Get-RpsTaskAssignment -TaskItem $taskItem -TargetItem $targetItem -TaskMap $taskMap
$taskAssignment.RetryCount = 5
Update-RpsTaskAssignment -TaskAssignment $taskAssignment

Example:  Use RetryCount to limit failures

Place the following sample code into the error handling section of a runbook to implement a limited # of retries. This will only
retry a TaskAssignment that already has the RetryCount  set.

$retryCount = [Rps.Api.Utils.Extensions]::GetProperty($TaskAssignment, 'RetryCount', 0)
if ($retryCount -gt 0)
{
    $TaskAssignment.RetryCount = $retryCount - 1
    Update-RpsTaskAssignment -TaskAssignment $TaskAssignment -TaskState $Rps.TaskStates.Retry -StatusMessage 
'Retry from Invoke-RpsTaskAssignment'
}
else
{
    throw "Error on $($computer.Name) in $runbookName. Error: $($TaskAssignment.StatusMessage)"
}

Require User Approval

Some Tasks may require manual user approval to continue or stop processing. This approval step requires setting the Task
Assignment’s state to PendingUserAction and setting a prompt for the operator. The operator then approves or denies the
action using RPS Web or PowerShell. If approved, the Task’s State will be set to Completed. If denied, the state is set to
Canceled.

Example:  Update Task Assignment for User Approval

Setting the required approval using the New-RpsTaskAssignmentUserAction cmdlet will create a prompt for the user in RPS Web.

New-RpsTaskAssignmentUserAction -TaskAssignment $taskAssignment `
    -UserActionPrompt 'Approve Domain Join?' `
    -UserActionApproveLabel 'Approve' `
    -UserActionDenyLabel 'Deny'

Addit ional Parameters

Most runbooks will need more information than just the provided TaskAssignmentID. These runbooks can use ItemMapping
attributes such as ResourceItemMapping. When the runbook is executed by TMS these parameters will be resolved and the
correct values will be passed in for each parameter. See How to Configure RPS-Mapped Parameters for more information about
ItemMapping attributes.

Example:  Mult iple Parameters in  a Runbook  



[CmdletBinding()]
param
(
    [Parameter(Mandatory = $true)]
    [System.Guid]
    $TaskAssignmentId,

    [Parameter(Mandatory = $true)]
    [ResourceItemMapping(EntityType = [ResourceTypes]::Credential, Role = 'DomainAdmin')]
    [pscredential]
    $DomainAdminCredential,

    [Parameter(Mandatory = $true)]
    [ResourceItemMapping(EntityType = [ResourceTypes]::SoftwareLicense, Role = 'OfficeActivation')]
    [Hashtable]
    $OfficeLicense
)

#Requires -Modules Rps-Api

Legacy Runbooks (Workflows) Guidance
Prior to RPS v2.1, all RPS Runbooks were authored as PowerShell workflows instead of pure PowerShell scripts. Some RPS
Runbooks are still Workflows, and they require special guidance.

P S D isableSerializat ionP reference    

PowerShell Workflows, and by inheritance TMS Runbooks, serialize objects without methods. This can limit the usability of some
RPS objects' method calls. To use these methods, the PSDisableSerializationPreference needs to be set to true.

$PSDisableSerializationPreference = $true

Workflow Naming

As a matter of consistency and support for the DSC resource managing RPS, the Workflow name must match the script name.

Registering Runbooks in RPS
Runbooks in the /Runbooks  folder are automatically imported into RPS during install, via the 
/Setup/Configuration/Import-RpsTasks.ps1  script. Once a full RPS Node is operational and TMS is running, any new or
modified scripts in the runbooks folder will be automatically registered and imported into RPS and TMS, using DSC as the folder
monitor.

NOTE

Runbooks are automatically available to TMS once they are in the Runbook Folder and a corresponding TaskItem is created.

Example:

# Create TaskItem for runbook Wait-TargetReady.ps1
New-RpsTaskItem -WorkflowName "Wait-TargetReady"

More Resources
Authoring RPS DSC Resources
RPS Tasking Guide





Introduction to RBAC in RPS
Last updated on December 30, 2020.

Last Reviewed and Approved on PENDING REVIEW

Introduction
Access management to resources is a critical function for any organization that has multiple types of users accessing a system.
Role-Based Access Control (RBAC) helps you manage who has access to resources, what they can do with those resources, and
what areas they have access to. RBAC is an authorization system that provides fine-grained access management of the Rapid
Provisioning System (RPS) resources.

The way you control access to resources using RPS RBAC is to create role assignments. This is a key concept to understand – it's
how permissions are enforced. A role assignment consists of three primary elements: Users, Roles, and Security Rights. The user
is a member of a role. A role is what has the security right assigned to it.

RPS uses an RBAC approach to restrict system access only to authorized users. With RPS, roles are predefined such as
administrator, or patch creator. These roles are a collection of different security rights. A user is placed in a particular role
depending on the function(s) they need to perform. A user assigned to zero roles will not have any access to RPS and a user can
also be assigned to multiple roles if they need to perform multiple duties in RPS. User and role assignment is dynamic and data
driven. Users can be assigned and unassigned to different roles at any time without reinstallation, allowing users permissions in
the system to grow and shrink with their assigned duties.

RPS roles are built around job duties and implement the principle of least privilege, meaning each role is designed to only allow a
user to perform the necessary functions related to that role and nothing more.

RBAC Fundamentals
Access and I nterfaces

Management of users, roles, and assignments is done either via the RPS Web Graphic User Interface (GUI) or via PowerShell
scripts. Regardless of your preferred RBAC management method, either done via GUI or PowerShell, RBAC has been designed to
have feature parity across both human interfaces. Via PowerShell, user creation and role assignment can be easily added to
scripts to help with automation. However, the RPS Web GUI makes it easy for anyone to manage users and roles.

Users

Users are based on domain and local Windows users. To be assigned a role, Users must still be enrolled in RPS.

Authentication

RPS does not perform user authentication it only handles authorization. All RPS authentication is handled by Windows. All user
accounts must be either local or domain Windows accounts to be authenticated and used by RPS. The RPS RBAC access
management system does not store any user passwords and it does not manage RPS user passwords. All password management
is handled through either the domain or Windows.

Role Assignment

Users are added to roles via the RPS Web GUI or via PowerShell Cmdlet. See How to Add and Remove User Roles. A user must
have the proper privileges to add and remove users from roles. Users cannot add and remove themselves from roles, unless they
are a super admin.

I nstallat ion 

On installation of RPS pre-defined roles are imported via a data import process.



How to Add and Remove User Roles
Last updated on July 30, 2021.

Last Reviewed and Approved on PENDING REVIEW

Intended Audience
This document is intended for use by the LSI or developer.

Introduction
The Rapid Provisioning System (RPS) uses a role-based authorization approach called Role-Based Access Control (RBAC) to
restrict system access only to authorized users. The way you control access to resources using RPS RBAC is to assign users to
roles. This is a key concept to understand—it is how permissions are enforced.

A role assignment consists of two primary elements: Users and Roles. The user is a member of a role. A role is what has the
security right assigned to it. The first layer of security is to ensure only people who require access to RPS have user accounts. This
article will provide the how-to instructions on adding or removing a role from a user in RPS.

Assumptions
1. You have read the Introduction to RBAC article and have a basic understanding of Role-Based Access Control.

2. You have access to the RPS Graphic User Interface (GUI or UI).

3. You are assigned to the appropriate role to make the changes you intend to make.

RBAC Fundamentals
R B AC Terms and D efin it ions    

R B AC TER M D EFINIT ION

Role-Based
Access
Control
(RBAC)

An authorization system that provides fine-grained access management of RPS resources.

Role A collection of permissions.

User
A logical representation of a person or persona acting as a consumer (of the application). Most users are objects found in
the Active Directory; however, some personas—such as service accounts—are treated as users but are not found in the
Active Directory.

Local User The Local User is stored on the computer's local hard disk. Changes made to the Local User profile are specific to the user
and to the computer on which the changes are made.

R B AC Concepts 

RPS uses Windows to perform its authentication, but has internal roles for authorization.
To add users to RPS, the user must be a local or domain account and must be accessible via the system running RPS.
When a user is added, they will not have any rights or privileges until they are assigned to a role.
If a local or domain account is suspended or deleted, that account will be unable to access RPS.

R P S  Roles  



The following pre-defined roles are available upon installation of RPS:

R OLE NAME D ES CR IPTION

AD Admin Allows full access to Active Directory items.

Audit Entry Viewer Can view audit entries.

Certificate Admin Full access to certificates.

Certificate Read Can read certificates.

Credential Admin full access to credential.

Credential Read Allows read access to credential.

DSC Admin Full DSC access.

DSC Partial Assigner Can assign DSC partials.

Full Read Full read can read all data in RPS.

Network Admin Allows full access to network items.

Patch Admin Patch admin has full control over patching system.

Patch Stream Approver Can approve patch streams.

Patch Stream Creator Can create patch streams.

Patch Stream Scheduler Can scheduler patch streams.

Patch Viewer Can view all patch data.

RBAC Admin Full RBAC control.

RPS Admin Full control over RPS, except for Security.

Super Admin Super admin has full control over RPS.

Sync and CDN Admin Can Administer Sync and CDN.

System Admin Allows full access to Virtual machines and related items.

How to Add a User to a Role in RPS in the Web User Interface
In RPS you can add single users or multiple users at the same time directly to roles.

To add a user to a role assignment:

1. From any page in RPS, select Admin in the navigation bar.

2. In the dropdown menu, select Roles.



Figure 1: Select Admin and then Roles in the dropdown.

3. Click on the [Role] you would like to add a user to.

Figure 2: Select a role to add the user to.



4. Scroll to the bottom of the page. In the 'Members' section, click Edit.

Figure 3: In the 'Members' section, click Edit.



5. Select the [User] from the 'Available Users' section you would like to add to the role.

6. Click the double right arrow >>.

Figure 4: Select the [User] from the 'Available Users' section to add to the role and click the double right arrow >>.

NOTE

To add multiple users, repeat steps 5 and 6.

7. Click Assign.





Figure 5: Click Assign.

8. The user you added to the role should now display under that role's members.



Figure 6: The added user displays under the role's 'Members' section.

How to Remove a User From a Role in RPS Using the Web User Interface
To remove a user from a role assignment:

1. From any page in RPS, select Admin in the navigation bar.

2. In the dropdown menu, select Roles.

Figure 7: Select Admin and then Roles in the dropdown.

3. Click on the [Role] you would like to remove a user from.



Figure 8: Select a role from which to remove the user.

4. Scroll to the bottom of the page. In the 'Members' section, click Edit.



Figure 9: In the 'Members' section, click Edit.

5. Select the [User] you would like to remove from the role in the 'Assigned Users' section.

6. Click the double left arrow <<.

NOTE

To remove multiple users, repeat steps 5 and 6.

7. Click Assign.





Figure 10: Select the [User] to remove from the role, click the double left arrow <<, and click Assign.

8. The user(s) you removed from the role should no longer display under that role's 'Members' section.

Figure 11: The removed user no longer displays in the selected role's 'Members' section.



How to Add a User to a Role, Remove a User From a Role, or View Role
Assignments in RPS Using PowerShell
Using PowerShell for RBAC functions in RPS gives you the ability to do the following actions:

1. Add a user to a role.

2. Remove a user from a role.

3. Find a role assignment by:

User
Role
ID

P rerequisite

IMPORTANT

In order to use the subsequent code snippets, the $user and $role variables must be set. This MUST be done one time per PowerShell session.

In PowerShell, enter the following cmdlets:

$user = Get-RpsUser -UserName "user1"
$role = Get-RpsRole -Name "Patch Admin"

IMPORTANT

The -UserName  and -Name  values used in the example above are arbitrary and should be replaced with the username and role name being
acted upon.

Adding a User to a Role:  The   Add-RpsRoleAssignment  Cmdlet

Parameters

1. User – Specified user.

2. Role – Role to be added.

How to Use the Cmdlet to Add a User to a Role

In PowerShell, enter the following cmdlet with the information appropriate for your user and role you would like to add, per the
parameters above.

Add-RpsRoleAssignment –User $user -Role $role







Figure 12: PowerShell running as Administrator with the above Add-RpsRoleAssignment  code snippet entered.

Removing a User From a Role in PowerShell:  The   Remove-RpsRoleAssignment  Cmdlet

Parameters

1. User – Specified user.

2. Role – Role to be removed.

How to Use the Cmdlet to Remove a User From a Role

In PowerShell, enter the following cmdlet with the information appropriate for your user and role you would like to remove, per
the parameters identified above.

Remove-RpsRoleAssignment –User $user -Role $role

Figure 13: PowerShell running as Administrator with the above Remove-RpsRoleAssignment  code snippet entered.

How to Find a Role Assignment in PowerShell:  The   Get-RpsRoleAssignment  Cmdlet

This cmdlet can get role assignment by user, role, or role ID.

Parameters

1. User – Specified user.

2. Role – Specified role.

3. Id – ID of the Role assigned.

How to G et a Role Assignment by User

In PowerShell, enter the following cmdlet with the information appropriate for your user you would like to view role assignment
for, per the parameters identified above.

Get-RpsRoleAssignment –User $user



Figure 14: Using the Get-RpsRoleAssignment  cmdlet to view role assignment by specified User parameter.

How to G et a Role Assignment by Role

In PowerShell, enter the following cmdlet with the information appropriate for your role you would like to view assignment for,
per the parameters identified above.

Get-RpsRoleAssignment –Role $role

Figure 15: Using the Get-RpsRoleAssignment  cmdlet to view role assignment by specified Role parameter.

How to G et a Role Assignment by I D 

In PowerShell, enter the following cmdlet with the information appropriate for your role ID you would like to view assignment for,
per the parameters identified above.

Get-RpsRoleAssignment –Id $lookupId

Figure 16: Using the Get-RpsRoleAssignment  cmdlet to view role assignment by specified (Role) Id parameter.

How to G et A ll Role Assignments 



In PowerShell, enter the following cmdlet:

Get-RpsRoleAssignment

Figure 17: Using the Get-RpsRoleAssignment  cmdlet to view all role assignments.



How to Manage User Roles with PowerShell
Last updated on March 1, 2021.

Last Reviewed and Approved on PENDING REVIEW

This document describes the step-by-step instructions from end to end managing assigning users enrolled in RPS to specific roles
in RPS.

How to Add a local/domain user to RPS Role using PowerShell cmdlets
1. Import the RPS API module

   Import-Module C:\ContentStore\Modules\Rps-Api

2. Get a user from RPS

   $userAdmin = Get-RpsUser -UserName Admin -DomainName Company

3. Get a RPS Role

Parameter options for the Get-RpsRole cmdlet are:

PAR AME TER NAME T YPE D ES CR IPTION

Id Guid- Optional Id of Role to retrieve.

Name String- Optional Name of Role to retrieve.

Empty Retrieve all roles.

   $role = Get-RpsRole -Name Patch Admin

4. Add a user to a role

Parameter options for the Add-RpsRoleAssignment cmdlet are:

PAR AME TER NAME T YPE D ES CR IPTION

User User- Required User to be assigned to role.

Role Role- Required Role to have user assigned.

   $role = Add-RpsRoleAssignment -user $userAdmin -role $role

NOTE

After the user is added to the role, they will have all the rights and privileges associated with that role

How to Remove a local/domain user from RPS Role using PowerShell
cmdlets

1. Import the RPS API module





   Import-Module C:\ContentStore\Modules\Rps-Api

2. Get a user from RPS

   $userAdmin = Get-RpsUser -UserName Admin -DomainName Company

3. Get a RPS Role

Parameter options for the Get-RpsRole cmdlet are:

PAR AME TER NAME T YPE D ES CR IPTION

Id Guid- Optional Id of Role to retrieve.

Name String- Optional Name of Role to retrieve.

Empty Retrieve all roles.

   $role = Get-RpsRole -Name Patch Admin

4. Remove a user from a role

Parameter options for the Remove-RpsRoleAssignment cmdlet are:

PAR AME TER NAME T YPE D ES CR IPTION

User User- Required User to be removed from role.

Role Role- Required Role to have user removed from.

   $role = Remove-RpsRoleAssignment -user $userAdmin -role $role

WARNING

After the user is no longer in the role, they will immediately lose all rights and privileges associated with that role





RBAC: How to Import and Export Users with the Web User
Interface
Last updated on February 4, 2021.

Last Reviewed and Approved on PENDING REVIEW

Intended Audience
This document is intended for use by the LSI or developer.

Introduction
The Rapid Provisioning System (RPS) uses a role-based authorization approach called Role-Based Access Control (RBAC) to
restrict system access only to authorized users. The way you control access to resources using RPS RBAC is to assign users to
roles. This is a key concept to understand – it's how permissions are enforced.

A role assignment consists of two primary elements: Users and Roles. The user is a member of a role. A role is what has the
security right assigned to it. The first layer of security is to ensure only people who require access to RPS have user accounts. This
article will provide the How-To process for importing and exporting users and their assigned roles to and from RPS.

Assumptions
1. You have read the Introduction to RBAC article and have a basic understanding of Role-Based Access Control.
2. You have access to the RPS Graphic User Interface (GUI or UI).
3. You are assigned to the appropriate role to make the changes you intend to make.
4. If Importing Users, you have an existing XML file with appropriate data.

RBAC Fundamentals
R B AC Terms and D efin it ions    

Role-Based Access Control (RBAC) – an authorization system that provides fine-grained access management of RPS
resources.
Role – a collection of permissions.
User – A logical representation of a person or persona acting as a consumer (of the application). Most users are objects
found in Active Directory, however some personas that are treated as users, such as service accounts are users that are not
found in Active Directory.

R B AC Concepts 

RPS uses Windows to perform its authentication but has internal roles for authorization.
To add users to RPS the user must be a local or domain account and must be accessible via the system running RPS.
Once a user is added they will not have any rights or privileges until they are assigned to a role.
If a local or domain account is suspended or deleted, that account will be unable to access RPS.

How to Import a List of Local/Domain Users to RPS
To import a user list XML file:

1. From any page in RPS, select Admin in the navigation bar.

2. In the dropdown menu, select Import Security Data. 



3. On the right side, locate 'Import File'. Click the Choose File button. 

4. After selecting your file... 



5. ...click on Upload. 

6. To verify your data has imported, you can select Users from the Admin dropdown navigation bar and validate the imported
users are there. 



How to Export a List of Local/Domain Users to RPS
To export a user list XML file:

1. From any page in RPS, select Admin in the navigation bar.
2. In the dropdown menu, select Export Security Data. 

3. Select the Users you would like to export. There are two options to select which users you would like to export.
3a. Select this box to select all users for export.
3b. Select individual users' boxes to export specific users.

4. (Optional) If you would like to encrypt the user export file, you may use a privately generated certificate and upload it here.
5. (Optional) If you would like to export the user's role assignments, check this box.

6. Click Export Selected. 



6. Click Export Selected. 

7. Save the file.



RBAC: How to Add and Remove Users with PowerShell
Last updated on February 4, 2021.

Last Reviewed and Approved on PENDING REVIEW

Intended Audience
This document is intended for use by the LSI or developer.

Introduction
The Rapid Provisioning System (RPS) uses a role-based authorization approach called Role-Based Access Control (RBAC) to
restrict system access only to authorized users. The way you control access to resources using RPS RBAC is to assign users to
roles. This is a key concept to understand – it's how permissions are enforced.

A role assignment consists of two primary elements: Users and Roles. The user is a member of a role. A role is what has the
security right assigned to it. The first layer of security is to ensure only people who require access to RPS have user accounts. This
article will provide the How-To process for adding and removing Users from RPS using PowerShell.

Assumptions
1. You have read the Introduction to RBAC article and have a basic understanding of Role-Based Access Control.
2. You have access to the RPS Graphic User Interface (GUI or UI).
3. You are assigned to the appropriate role to make the changes you intend to make.

RBAC Fundamentals
R B AC Terms and D efin it ions    

Role-Based Access Control (RBAC) – an authorization system that provides fine-grained access management of RPS
resources.
Role – a collection of permissions.
User – A logical representation of a person or persona acting as a consumer (of the application). Most users are objects
found in Active Directory, however some personas that are treated as users, such as service accounts are users that are not
found in Active Directory.

R B AC Concepts 

RPS uses Windows to perform its authentication but has internal roles for authorization.
To add users to RPS the user must be a local or domain account and must be accessible via the system running RPS.
Once a user is added they will not have any rights or privileges until they are assigned to a role.
If a local or domain account is suspended or deleted, that account will be unable to access RPS.

How to Add a Local/Domain User to RPS Using PowerShell Cmdlets
1. Import the RPS API module.

Import-Module C:\ContentStore\Modules\Rps-Api

2. Add the user to RPS.

Parameter options for the New-RpsUser cmdlet are:



PAR AME TER
NAME T YPE D ES CR IPTION

UserName string-
Required Domain/Local Username of account.

DomainName string-
Optional

Domain Name or Machine Name; if no value is provided Domain will default to Machine
Name.

New-RpsUser -UserName Admin -DomainName Company

NOTE

By Default, the New-RPSUser Command validates the user exists. If you would like to skip validation, add the -force  flag.

After the user is added to RPS they can then have roles assigned to them using Add-RpsRoleAssignment Cmdlet. See: How to Add and
Remove User Roles

How to Remove a Local/Domain User From RPS Using PowerShell
Cmdlets

1. Import the RPS API module.

Import-Module C:\ContentStore\Modules\Rps-Api

2. Get all users from RPS.

Parameter options for the Get-RpsUser cmdlet are:

PAR AME TER NAME T YPE D ES CR IPTION

Id Guid- Optional Get user by ID.

UserName string- Optional Get user by UserName.

DomainName string- Optional Get user by DomainName.

Empty Get all users.

$userAdmin = Get-RpsUser -UserName Admin -DomainName Company

3. Remove the user from RPS.

Parameter options for the Remove-RpsUser cmdlet are:

PAR AME TER NAME T YPE D ES CR IPTION

User User- Required User object to be removed from RPS.

Remove-RpsUser -User $userAdmin

WARNING







After the user is removed, they will no longer have any access to RPS.



RBAC: How to Add and Remove Users with the Web User
Interface
Last updated on February 4, 2021.

Last Reviewed and Approved on PENDING REVIEW

Intended Audience
This document is intended for use by the LSI or developer.

Introduction
The Rapid Provisioning System (RPS) uses a role-based authorization approach called Role-Based Access Control (RBAC) to
restrict system access only to authorized users. The way you control access to resources using RPS RBAC is to assign users to
roles. This is a key concept to understand – it's how permissions are enforced.

A role assignment consists of two primary elements: Users and Roles. The user is a member of a role. A role is what has the
security right assigned to it. The first layer of security is to ensure only people who require access to RPS have user accounts. This
article will provide the How-To process for adding and removing Users from RPS using the Web Interface.

Assumptions
1. You have read the Introduction to RBAC article and have a basic understanding of Role-Based Access Control.
2. You have access to the RPS Graphic User Interface (GUI or UI).
3. You are assigned to the appropriate role to make the changes you intend to make.

RBAC Fundamentals
R B AC Terms and D efin it ions    

Role-Based Access Control (RBAC) – an authorization system that provides fine-grained access management of RPS
resources.
Role – a collection of permissions.
User – A logical representation of a person or persona acting as a consumer (of the application). Most users are objects
found in Active Directory, however some personas that are treated as users, such as service accounts are users that are not
found in Active Directory.

R B AC Concepts 

RPS uses Windows to perform its authentication but has internal roles for authorization.
To add users to RPS the user must be a local or domain account and must be accessible via the system running RPS.
Once a user is added they will not have any rights or privileges until they are assigned to a role.
If a local or domain account is suspended or deleted, that account will be unable to access RPS.

How to Add a Local/Domain User to RPS
To Add a User:

1. From any page in RPS, select Admin in the navigation bar.

2. In the dropdown menu, select Users. 



3. Click the Add User button. 

4. Select a User from the Available Users List.
5. Domain Name should be pre-populated based on the User Selected.

6. Create a User Name.

NOTE

Can be any combination of letters and numbers.

7. (Optional) Select "Is Monitored?" if the user is a "Break Glass" account.
8. Click Create. 





How to Remove a Local/Domain User to RPS
To Remove a User:

1. From any page in RPS, select Admin in the navigation bar.

2. In the dropdown menu, select Users. 

3. Click the Delete Trash Can button. 



4. Click OK on the confirmation pop up. 



Audit Entries
Last updated on February 4, 2021.

Last Reviewed and Approved on PENDING REVIEW

Intended Audience
This document is intended for use by the LSI or developer.

Introduction
The purpose of an Audit Entry is to offer a means to examine a user action and change made to an entity, within RPS.

An Audit Entry represents a change in state of an RPS entity such as a Patch (i.e., a Resource Item). Audit Entries contain
information such as both the original and new values of the altered entity. Additionally, a timestamp of the change is provided, as
well as the Username of the person responsible for the change. You can also find information such as the effected entity class,
type, ID, etc. within an Audit Entry.

This article will provide the How-To process for viewing Audit entries of users from RPS.

Assumptions
1. You have read the Introduction to RBAC article and have a basic understanding of Role-Based Access Control.
2. You have access to the RPS Graphic User Interface (GUI or UI).
3. You are assigned to the appropriate role to make the changes you intend to make.

RBAC Fundamentals
R B AC Terms and D efin it ions    

Role-Based Access Control (RBAC) – an authorization system that provides fine-grained access management of RPS
resources.
Role – a collection of permissions.
User – A logical representation of a person or persona acting as a consumer (of the application). Most users are objects
found in Active Directory, however some personas that are treated as users, such as service accounts are users that are not
found in Active Directory.
Managed User – An RPS User account whose changes to RPS entities are monitored and reviewable.

Audit Concepts
NOTE

It is important to note that RPS does not monitor users out of the box.

Audit Entries work in conjunction with Monitored Users. An Audit Entry is created when a Monitored User performs an action or
makes a change within RPS. These records allow administrators to “audit” RPS whenever necessary.

There are two ways to view and interact with Audit Entries: through PowerShell, and through the RPS Web UI. Both features are
discussed in detail below.

In the example of an Audit Entry created for a Patch, you might find the following information:





PAR AME TER NAME VALU E

Entity Id bcc98a09-f4fb-4a65-94a8-6f0699bf0156

Entity Class ResourceItem

Entity Change Type Modified

Entity Type Patch

Modified By jdoe

Modified Data 9/29/2020 1:22:04 AM

Old Values x

New Values y

In this example, you can see that a ResourceItem of type Patch was modified by jdoe – where the old value of “x” was changed to
“y” on 9/29/2020 at 1:22:04 AM.

Finding and Reviewing Audit Entries with the RPS Web UI
The Audit Entries web page can be viewed by all users; however, data will only be populated if the currently signed-in user
possesses the required privileges/permissions. Users are only able to read/examine Audit Entries through the web user interface
(UI). Users cannot create, modify, or delete Audit Entries.

To find audit entries in RPS:

1. From any page in RPS, select Admin in the navigation bar.

2. In the dropdown menu, select Audit Entries. 



Audit Entries are presented in a paginated/sorted table which looks as follows:

Filtering and Sor t ing Parameters 

The following parameters can be used to return a filtered set of Audit Entries in both the RPS Web UI and PowerShell:

PAR AME TER NAME D ES CR IPTION

EntityId This parameter specifies the ID (GUID) of the audited entity.

EntityClass This parameter specifies the class of the audited entity (i.e., “ResourceItem”).

EntityType This parameter specifies the type of the audited entity (i.e., “Patch”).

ChangeType

This parameter specifies the state or change type of the audited entity. Valid values are:
Unchanged
Added
Modified
Deleted
Detached
Read

UserName The username of the user responsible for the change associated with the Audit Entry.

StartTime A start DateTime to filter the Audit Entries by.

EndTime An end DateTime to filter the Audit Entries by.



To Sor t a Table

Click on the column header you would like to sort by.

To Filter a Table

The table can be filtered with the provided filters on the left-hand side of the page. These filters are the same as described above
in this section.

V iew Audit Entry D etails 

To view the details of a particular Audit Entry:

1. Click on the audit entries View Details button in the row of the entry.

NOTE

By clicking on the button labeled above, you will be taken to a detailed view page for the Audit Entry, with more information such as the original
and new values.





Finding and Reviewing Audit Entries Using PowerShell
RPS offers a single PowerShell cmdlet, Get-RpsAuditEntry, for interacting with Audit Entries. Audit Entries are essentially read-
only to users, hence the sole cmdlet being a “GET”.

This cmdlet allows authorized users to query the database for either All Audit Entries or a specified Subset. There are no
required/mandatory parameters.

If the cmdlet is executed without passing in any parameters, such as by typing:

Get-RpsAuditEntry

A list of all Audit Entries will be returned to the user.

To Filter or Sor t Audit Entries:

The filtering and sorting parameters for PowerShell are the same as the Web User Interface:

PAR AME TER NAME D ES CR IPTION

EntityId This parameter specifies the ID (GUID) of the audited entity.

EntityClass This parameter specifies the class of the audited entity (i.e., “ResourceItem”).

EntityType This parameter specifies the type of the audited entity (i.e., “Patch”).

ChangeType

This parameter specifies the state or change type of the audited entity. Valid values are:
Unchanged
Added
Modified
Deleted
Detached
Read

UserName The username of the user responsible for the change associated with the Audit Entry.

StartTime A start DateTime to filter the Audit Entries by.

EndTime An end DateTime to filter the Audit Entries by.



Any of these filtering and sorting parameters can be used in combination with the Get-RpsAuditEntry cmdlet in the following
format:

Get-RpsAuditEntry -Username "jdoe" -ChangeType "Deleted"



How to Add a Node to an Existing RPS Environment
Last updated on March 1, 2021.

Last Reviewed and Approved on PENDING REVIEW

This guide will describe how to add a new unparented node to an existing RPS Environment. For the following steps, the example
environment is as follows:

APP.Master
APP.Region

APP-S.Region
APP-S2.Region 1. This node is added after the initial deployment and does not initially have a parent

1. Login to APP.Region and App-S2.Region as RPSAdmin

2. Run this command on App.Region to see the details of the App.Region node. These details will be used in the next step.

Get-RpsNode

3. Run this command on Site2 to create the Region node:

New-RpsNode -NodeId <id_of_app.region>  -Name Region -SyncEndpointUrl <sync_endpoint_url_of_app.region> 
-CertificateThumbprint <certificate_thumbprint_of_app.region> -Hostname <hostname_of_app.region> -
IpAddress <ip_address_of_app.region>

4. Run these commands on Site2. The last command will show the details of the APP-S2 node. These details will be used in the
next step.

$node = Get-RpsNode -Name Site2
$node.ParentNodeId = <id_of_app.region>
Set-RpsNode -Node $node
$node

5. Run the following command and restart RpsSync services to create the Site2 node:

New-RpsNode -NodeId <id_of_site2> -Name Site2 -SyncEndpointUrl <sync_endpoint_url_of_site2> -
CertificateThumbprint <certificate_thumbprint_of_site2> -Hostname APP-S2.region.rps -IpAddress 
<ip_address_of_site2> -ParentNodeId <id_of_app.region>

1. Restart the RpsSync service on both machines (APP.Region and APP-S2.region):
2. Windows Key + R
3. Services.msc
4. Find RpsSync, right-click on it, and select Restart

6. On APP.region, after the sync service has restarted

1. Windows Key + R
2. iexplore https://app.region.rps:8080/
3. Targeting > Nodes
4. Find the Region node and click on it
5. Make sure that the Site2 node is listed as a Child Node
6. Dashboard > Sync
7. Check for any sync errors to make sure it’s synchronizing properly

7. On APP-S2.region, after the sync service has restarted

1. Windows Key + R



2. iexplore https://app-s2.region.rps:8080/
3. Targeting > Nodes
4. Find the Region node and click on it
5. Make sure that the Site2 node is listed as a Child Node
6. Dashboard > Sync
7. Check for any sync errors to make sure it’s synchronizing properly
8. Resourcing > Resources
9. Add Resource > Resource

8. Fill out the form with any information and click on the Save button

9. Restart the RpsSync service on both machines (APP.Region and APP-S2.region)

10. Check that your new Resource appears on both machines (you may need to give sync a few minutes). Do the following on
each machine to check:

1. Windows Key + R
2. iexplore https://app.region.rps:8080/
3. Resourcing > Resources
4. Look for your new Resource



How to Self-Register Your Node: Node Self-Parenting
Last updated on January 19, 2021.

Last Reviewed and Approved on PENDING REVIEW

A node can self register with a parent through the ParentSyncEndpointUrl property. When this property is set, the Sync service
sends a request with its node (and any of its child nodes) to the Sync service endpoint specified by the property. The service at
ParentSyncEndpointUrl then adds the sending node (and any of that node's child nodes) to its database and set the the sending
node as a child. The new parent will then send its node back to the child. The new child then adds the parent node to its database.

NOTE

The parent sends only its node information to the child. It does not tell the child about any other nodes. In this sense, the child will never know
about grandparent(s) nor sibling(s).

If the child node already exist on the parent node, then no modifications are made at the parent node. For example, if the parent has information
for the child node, but there is no parent-child relationship, a parent-child relationship will not be established. The child node information must
first be removed from the parent's database.

If the child node already has a parent node, it will not try to reregister with that parent nor register with a new parent. To reestablish or establish
a new parent relationship, the parent node information must first be removed from the child's database.

The Sync service will retry the parenting request at intervals, configurable by setting the SelfRegisterNodeIntervalInMin
property to the number of minutes between attempts. If not set, the default is 3 minutes.

Prerequisites
Rps.Sync.exe must be version 3.1.3 or greater.
The Sync service on the child must be able to communicate and authenticate with the Sync service on the parent.

To Register a Node with a Parent:
1. On the child node, configure the ParentSyncEndpointUrl property with the value of the desired parent node's

SyncEndpointUrl.
2. [Optional] On the child node, configure the SelfRegisterNodeIntervalInMin property with the number of minutes to wait

between registration attempts. If this property is not set, the default is 3 minutes.
3. On the child node, restart the Sync service. The ParentSyncEndpointUrl and SelfRegisterNodeIntervalInMin properties

are only retrieved from the node when the service starts.





How to Configure RPS Sync Settings
Last updated on August 31, 2021.

Document Status: Document Developer Quality Complete.

Introduction
This article will describe the settings that are used to configure RPS Sync.

SyncOrchestratorTimerSetting
SyncOrchestratorTimerSetting is used to configure the schedule of sync orchestration. When sync orchestration occurs, changes
are pushed to and/or pulled from the parent node. Sync orchestration does not include committing changes to the database, only
the pulling and pushing of changes.

The value of the setting needs to be a CRON expression. For examples of CRON expressions, see
https://crontab.guru/examples.html.

NOTE

If SyncOrchestratorTimerSetting is not set, by default sync orchestration will occur every 1 minute.

The following example would configure sync orchestration to occur every 10 minutes.

Set-RpsStorageValue -Key 'SyncOrchestratorTimerSetting' -Value '*/10 * * * *'

SyncMergeTimerSetting
SyncMergeTimerSetting is used to configure the schedule of merging in received RPS changes. When merge occurs, RPS changes
are committed to the database.

The value of the setting needs to be a CRON expression. For examples of CRON expressions, see
https://crontab.guru/examples.html.

NOTE

If SyncMergeTimerSetting is not set, by default sync merge will occur every 3 minutes.

The following example would configure sync merge timing to occur every 15 minutes.

Set-RpsStorageValue -Key 'SyncMergeTimerSetting' -Value '*/15 * * * *'

SyncEndpointUrl
Sync is initiated by child nodes and it will use its parent node's SyncEndpointUrl  value as the endpoint to push to and pull from.

The following example will set the local node's parent Sync Endpoint Url to https://NOSC.rps.local:777/sync/v1.0/sync . The
value used should be specific to the URL for the local node's parent sync endpoint URL.







# Get Local Node's parent
$parentNode = (Get-RpsLocalNode).ParentNode

# Set the Parent Node's Sync Endpoint Url
Set-RpsNode -Node $parentNode -SyncEndpointUrl 'https://NOSC.rps.local:777/sync/v1.0/sync'



Introduction to Logging in RPS
Last updated on August 25, 2021.

Document Status: Document Developer Quality Complete.

What is Logging in RPS
Logging in RPS is the act of storing relevant information around processes and functions that RPS performs. These logs can be
informational, information useful for diagnosing application state, or even errors that occur during processing.

When Does Logging Occur
Logging in RPS occurs when any process, both background and foreground, hits a point where information relevant to the user
should be conveyed.



How to Control Logging Behavior in RPS
Last updated on August 25, 2021.

Document Status: Document Developer Quality Pending.

RPS Logging Settings
RPS' logging behavior can be controlled by changing settings in the RPS Settings.

MinimumLogLevel

The MinimumLogLevel  setting controls what level of logging is written to the event viewer. This setting is global and will apply to
all services and components of RPS. The setting defaults to Warning if a valid value is not set.

Set-RpsStorageValue -Key MinimumLogLevel -Value <Value>

Acceptable MinimumLogLevel  setting values:

Debug
Error
Fatal
Information
Verbose
Warning

Use Case

Example: The user would like to see debug level logging to diagnose an issue. The current MinimumLogLevel is set to Warning.
The user should change the log level to Debug log level in order to see more specific and detailed logs.

Set-RpsStorageValue -Key MinimumLogLevel -Value "Debug"

After they have finished troubleshooting, the user can set the log level back to Warning to avoid filling the log with informational
messages that are not routinely needed.

Set-RpsStorageValue -Key MinimumLogLevel -Value "Warning"



Viewing RPS Logs
Last updated on August 25, 2021.

Document Status: Document Developer Quality Pending.

Where Are RPS Logs Stored
RPS logs are stored in the Windows Event Log under "Application and Services Logs" → RPS. The individual logs are grouped by
the component that logged them, such as RpsApi or RpsWebApi.

Figure 1: Window Event Viewer showing RPS Logs.

How to Open Windows Event Log Viewer
1. Open the start menu and type "Event Viewer".

2. Select Event Viewer at the top of the menu list.



Figure 2: Start menu showing Event Viewer search.

3. Expand "Application and Services Logs" and select RPS.



Figure 3: Selecting RPS logs in Event Viewer.



Writing Log Messages
Last updated on August 25, 2021.

Document Status: Document Developer Quality Pending.

Write-RpsLogItem PowerShell Cmdlet
Logs can be written to the RPS log via the Write-RpsLogItem  Cmdlet in PowerShell.

IMPORTANT

The first time writing a log with a component that has not been written to the log before, the session needs to be run as a user with
Administrator credentials in order to create the component as a new Log Source.

Parameters

PAR AME TER
NAME T YPE R EQU IR ED D ES CR IPTION

Level String True The logging level of the log. Acceptable values are: Debug, Error, Fatal, Information, Verbose,
Warning.

Component String False The name of the component that is responsible for the statement. Defaults to A.

MessageTemplate String True The message template to log. Parameterized values should be closed in "{}". I.e., "This is a log
message for {parameter}".

Properties String False The properties to attach to the log message.

Examples

Without P roper t ies  

This will write a message without parameterized values to the backing RPS log.

Write-RpsLogItem -Level "Warning" -Component "Master-Controller" -MessageTemplate "Task map is already 
assigned." -Force

The output would be similar to this:

Figure 1: Writing RPS log message without parameters.

With P roper t ies  

Properties will be used to fill in parameterized parts of the MessageTemplate. For example, "User {0} has performed an {1} action"
is the template. The parameters could be @('SomeRpsUser', 'Create'). The resulting message would be "User SomeRpsUser has
performed an Create action".

Write-RpsLogItem -Level "Debug" -Component "RpsWebApi" -MessageTemplate "User {0} has performed an {1} action" 
-Properties @('SomeRpsUser', 'Create')

The output would be similar to this:





Figure 2: Writing RPS log message with parameters.



RPS Testing Strategy
Last updated on May 12, 2020.

Last Reviewed and Approved on PENDING REVIEW

Overview
Automation is the primary form of testing for the RPS development team. An ever growing suite of unit, integration, systems and
UI tests are run on a regular basis to ensure functionality aligns with assumptions and expectations. Tests are driven by the
requirements of user stories and verifying that remediated defects do not return. There is no manual test plan maintained by the
RPS team. Instead, we rely on our collection of automated tests to serve as a living test plan. Results of automated tests, and the
builds they are associated with, can be found in Azure DevOps.

Automated Tests
All automated tests are stored as code within the Core and Common RPS repositories. In order to review all automated tests, an
evaluator would need access to the Core and Common RPS repositories and be able to read C# and PowerShell code. If you do
not have access to the RPS repositories, and you would like access for reviewing the suite of tests that RPS runs, please contact an
RPS Project Manager. The results of running automated tests are available in Azure DevOps Dashboards. If you require access to
the dashboards to review the results of automated tests, please contact an RPS Project Manager.

Current Test Locations
At the time of writing, system tests can be found in the SystemTest folder within the RPS Core repository. Integration tests can be
found within the Core repository in Source/{FolderName}.IntegrationTests folders. Unit tests can be found in the Core repository
in Source/{FolderName}.Tests folders. As repository rationalization continues, these test locations may change over time. Please
contact an RPS Project Manager if test files and folders do not align with this documentation.



RPS Automation Package Guidelines
Last updated on January 13, 2021.

Last Reviewed and Approved on PENDING REVIEW

The Rapid Provisioning System (RPS) is designed to be a re-usable solution that offers similar, flexible functionality for programs,
efforts, and automation requirements. The system was initially designed to survive the inherent constraints and challenges of a
mobile tactical network.

The goal of this design is to create a stable, secure, and highly automated management infrastructure solution to provide the
following (but not limited to) capabilities:

How to Load an Automation Package
An Automation Package is typically loaded using a Load Script. The load script is flexible but is coded to simply place the
components for a given automation package in the proper locations. This script is typically only executed one time to initially load
a set of functionalities, scripts, metadata, or other configuration information into the RPS system. This script is run once during the
initial load of the Automation Package. This can occur at initial system build, or after the system is already established, and should
contain all logic necessary to add itself to the RPS system.

Some common actions a Load Script may take will include:

Inserting Metadata into the RPS Configuration Management Database (CMDB)

Placing PowerShell Scripts and Modules into the appropriate locations defined for RPS, this will allow the system to
automatically register and load them for use (See Section 2.5 for info on placement)

Placing external software components used by those Scripts and Modules into the necessary locations as coded by the
authors (e.g., VMWare tools being installed)

Inserting TaskItem and TaskMap metadata into the database. These are the definitions of what should be run, targeting what
devices, and in what order.

Once the load script is executed, it is typically removed and no longer required. The initial insert of data serves as a way to inject
new business logic into the system. From there, the system will function based on the inserted POR authored Automation
Package.

Post-Load Actions and Activity
Once a package is loaded, business requirements begin to dictate what will happen next. For example, if the Load Script is coded
to activate automation work on load, then RPS actions will begin immediately processing.

If the Load Script is not coded to activate automation work on load, the following RPS components can be used to control and
trigger automation execution:

IsActive settings
PendingUserActions
TaskAssignment creation
TaskMapAssignment creation

Using these core functionalities, automation can be triggered, controlled, and centrally managed on an as-needed basis. Post-
Load activities are controlled by the needs of the business and should be coded to support the intended execution model.

Format of an Automation Package



The format of an automation package should follow the folder structure of the build output that RPS produces, and either be
included with the initial set of installations of an RPS software stack, or placed into the same folders once RPS is already installed.

For example, using the figure below showing a sample build output from RPS, there are clearly defined locations for various
components of an Automation Package. There are folders and descriptions for the intended location of specific components
already defined. The format of the Automation package will vary depending on business use and intended uptake of the content.

B uild Output and Automated Suppor t 

Some folders supplied as part of the RPS Build output will support automated control and placement of inserted code product.
This section will explain which folders are supported and by what action or activity:

TER M D EFINIT ION

Certificates This is a general store for storage of certificates required by the system. Some are controlled automatically, but this is done
per certificate currently.

DSC This folder is used to hold both Desired State Configuration (DSC) configurations and Resources. RPS support of DSC
processes are coded to look to these locations for supporting DSC resources and configuration files.

Modules
Any PowerShell modules located in this directory will be automatically placed into the appropriate PowerShell Modules
directory on the server RPS is installed on. Once this directory exists on a server with RPS installed, any newly added modules
will be copied on next pass of the DSC configuration (typically 30 minutes).

Runbooks Default folder for Task Management Service to locate and execute Runbooks. Only runbooks located here will be executed by
TMS. Subfolders are not supported.

More Resources
RPS Customization Guide - High Level Overview
RPS IPSheet Parser



Token Based Software Activation with PowerShell
Last updated on April 14, 2021.

Last Reviewed and Approved on PENDING REVIEW

Intended Audience
This document is intended for use by the Lead Service Integrator (LSI) or developer.

Introduction
During a new vehicle field activation, you will likely need to activate a Windows Operating System and/or Microsoft Office
products. There are three primary methods that can be used: PowerShell, RPS runbooks, and through the RPS Web User Interface.

Assumptions
The following is assumed prior to performing the actions described in this article:

You have access to the certificate (token), the public certificate, and issuance license file mentioned in the requirements
above.
You have access to PowerShell and the Rps-SoftwareActivation  module is installed.

Token Based Activation Requirements and Pre-Requisites
Token B ased Activation P re-Requisites 

To activate Microsoft products via token based activation, three things are needed:

1. The certificate (token) that will be used to activate the software.

2. The public certificate from the Certificate Authority that signed the activation token.

3. The issuance license file that defines what software products will be activated.

Installing Pre-Requisites
Before activating any software, you must establish your working session. To do so, execute the following PowerShell Command in
PowerShell ISE Administrator Mode.

IMPORTANT

Start by establishing your working session in PowerShell ISE Administrator Mode.

1. Click on the Search Icon from the Start Menu. 





Figure 1: Click on Search Icon.

2. Search for PowerShell ISE by typing PowerShell ISE in the Search bar. 



Figure 2: Search for PowerShell ISE.

3. Click on Run As Administrator. 



Figure 3: Open PowerShell ISE as Administrator.

NOTE

Any component of the PowerShell scripts below that are bookended by single quotes, must be replaced with use specific data (i.e., setting
your own password).

4. Install the Required Certificates. The following cmdlet will install both the certificate (token) and public certificate:

$certificatePassword = ConvertTo-SecureString -String 'password!' -AsPlainText -Force

Install-TokenBasedActivationCertificate -ActivationPrivateCertificate 'tokenBasedActivation.pfx' -
Password $certificatePassword -ActivationPublicCertificate 'MicrosoftProductActivationPCA 2017.cer'

5. Install the Issuance License File. The following cmdlet will install the issuance license:

Install-SoftwareActivationIssuanceLicense -IssuanceLicensePath 'C:\Windows 
Client_Server_Office_Visio_SHA2.Request52416.xrm-ms' -Verbose

After completing the pre-requisites, you can now activate the Windows OS and/or Office Product.

Activating a Windows OS
To activate a Windows OS, execute the PowerShell commands below. This PowerShell cmdlet searches through the local machine
certificate store to find the certificate that has "Microsoft Product Activation" in the Subject. This will be the certificate used as the
token for activation.





$cert = dir Cert:\LocalMachine\My | Where {$_.Subject -match 'Microsoft Product Activation'}
Register-TokenActivationIssuanceLicense -CertificateThumbprint $cert.Thumbprint -Verbose

Activating a Microsoft Office Product
To activate an Office product, execute the PowerShell commands below. This PowerShell cmdlet is used to activate Office and
requires both the thumbprint of the certificate used for activation and the path to the issuance license file.

$cert = dir Cert:\LocalMachine\My | Where {$_.Subject -match 'Microsoft Product Activation'}
Register-OfficeProductActivation -IssuanceLicensePath 'license.xml' -CertificateThumbprint $cert.Thumbprint

More Resources
Token Based Software Activation with RPS Runbooks



Token Based Software Activation with RPS Runbooks
Last updated on April 14, 2021.

Last Reviewed and Approved on PENDING REVIEW

Intended Audience
This document is intended for use by the Lead Service Integrator (LSI) or developer.

Introduction
During a new vehicle field activation, you will likely need to activate a Windows Operating System and/or Microsoft Office
Products. There are three primary methods that can be used: PowerShell, runbooks, and through the Web User Interface. This
article will demonstrate how to activate software using runbooks.

Assumptions
The following is assumed prior to performing the actions described in this article:

You have access to the certificate (token), the public certificate, and issuance license file mentioned in the requirements
below.
You have access to PowerShell and/or RPS Graphic User Interface (GUI or UI).
You are assigned to the appropriate role to make the changes you intend to make.

Token Based Activation Requirements and Pre-Requisites
Runbook P re-Requisites

To activate Microsoft products with runbooks via token based activation, three things are needed:

1. The certificate (token) that will be used to activate the software.

2. The public certificate from the Certificate Authority that signed the activation token.

3. The issuance license file that defines what software products will be activated.

To activate Windows software with runbooks in RPS, the following runbooks may be used:

Set-WindowsActivation: used to activate Windows OS.

Set-OfficeActivation: used to activate Office products.

Verifying Runbook Requirements

In order to activate Windows or Office with their respective runbook, you must first verify that the following exist:

1. Certificates (See Token Based Software Activation with PowerShell).

2. Software License Resource Item (See Token Based Software Activation with PowerShell).

Runbook Target I tem P re-Requisites:  Cer t ificates & Roles     

The runbook will be run against a TargetItem. This TargetItem must have two certificates assigned with the following roles:

WindowsActivation
WindowsActivationCA

R P S  ResourceI tem P re-Requisites    



RPS must have a ResourceItem with the following:

1. Type  of "SoftwareLicense".

2. Role  of "Windows".

Activating Software with RPS Runbooks
Establish a Working Session

Before activating any software, you must establish your working session. To do so, execute the following PowerShell Command in
PowerShell ISE Administrator Mode.

IMPORTANT

Start by establishing your working session in PowerShell ISE Administrator Mode.

1. Search for PowerShell ISE by typing PowerShell ISE in the Cortana Search bar.

2. Click on Run As Administrator. 

Figure 1: Open PowerShell ISE as Administrator.

Activation

NOTE







Any component of the PowerShell scripts below that are bookended by double quotes, must be replaced with use specific data (i.e., setting your
own password).

Activating the Windows OS  on Server1

After establishing your session in PowerShell ISE, execute the following cmdlets to activate Windows OS:

$task = Get-RpsTaskItem -WorkflowName "Set-WindowsActivation"
$target = Get-RpsTargetItem -Type "VirtualMachine" -Name "Server1"
$assignment = New-RpsTaskAssignment -TaskItem $task -TargetItem $target

Activating Office P roducts on Server1

After establishing your session in PowerShell ISE, execute the following cmdlets to activate Microsoft Office Products:

$task = Get-RpsTaskItem -WorkflowName "Set-OfficeActivation"
$target = Get-RpsTargetItem -Type "VirtualMachine" -Name "Server1"
$assignment = New-RpsTaskAssignment -TaskItem $task -TargetItem $target

More Resources
Token Based Software Activation with PowerShell



Token Based Software Activation Using the User Interface
Last updated on April 9, 2021.

Last Reviewed and Approved on PENDING REVIEW

Intended Audience
This document is intended for use by the Lead Service Integrator (LSI) or developer.

Introduction
During a new vehicle field activation, you will likely need to activate a Windows Operating System and/or Microsoft Office
Products. There are three primary methods that can be used: PowerShell, runbooks, and through the Web User Interface. This
article will demonstrate how to activate software using the Web User Interface.

Assumptions
The following is assumed prior to performing the actions described in this article:

You have access to the RPS Graphic User Interface (GUI or UI).
You are assigned to the appropriate role to make the changes you intend to make.
The license certificates are available in RPS (see Verifying Pre-Requisites to confirm).

Verifying Pre-Requisites
The activation process for a Windows Operating System or Microsoft Office Product is the same. Before activating the license, you
must verify the required license certificates are available in RPS.

1. From any screen in RPS, select Targeting to expand the dropdown in the navigation menu.

2. Click on Items.



Figure 1: Select Targeting(1) and click Items(2).

3. Click on the [Virtual Machine Name] you would like to activate Windows OS or Office Products on.



Figure 2: Example selecting an Item of VirtualMachine Type to activate Windows OS or Office Products on.

4. Scroll down the page to the Resource Assignments section and verify that both license certificates with the following names
are available.

1. Certificate-TokenBasedActivation-WindowsActivation

2. Certificate-MicrosoftProductActivationPCA2017_WindowsActivationCA

NOTE

"PCA2017" may have a different name specific to the version of Office Product you are installing.





Figure 3: Certificate Verification.

5. At the top of the screen, select Resourcing to expand the dropdown in the navigation menu.

6. Click on Resources.

Figure 4: Select Resourcing(5) and click on Resources(6).

7. On the left side, select the Item Type dropdown.



8. Select SoftwareLicense.

Figure 5: Select the Item Type dropdown(7) and select SoftwareLicense(8).

9. Click on the appropriate License.

Figure 6: Click on the appropriate License.

10. Verify that Role is set to Windows.



Figure 7: Verify Role is set to Windows.

Installation
After successfully verifying the pre-requisites, the subsequent instructions can be followed to activate either the Windows OS or
Office Products.

1. From any screen in RPS, select Targeting to expand the drop down in the navigation menu.

2. Click on Items.



Figure 8: Select Targeting(1) and click Items(2).

3. Click on the [Virtual Machine Name] you would like to activate Windows OS or Office products on.



Figure 9: Example selecting an Item of VirtualMachine Type to activate Windows OS or Office Products on.

4. Scroll down to the Task Assignments section of the page.

NOTE

If you cannot see the blue + Add Task Assignment button, you can expand the section by clicking on the Task Assignment section
header.





Figure 10: Expand Task Assignment.

5. Click on + Add Task Assignment.



Figure 11: Click + Add Task Assignment.

6. In the New Task Assignment pop-up box, select the appropriate Task.

To activate a Windows OS, select Set-WindowsActivation.
To activate Office products, select Set-OfficeActivation.

7. Click Assign.

Figure 12: Select the appropriate Task(6) and click Assign(7).

Verifying Activation Status
You can verify the activation status by checking the Task Assignments status screen.

1. From any screen in RPS, select Tasking to expand the dropdown in the navigation menu.

2. Click on Assignments.

Figure 13: Select Tasking(1) and click on Assignments(2).



3. The dashboard will show you the status of the Task Assignment Activation.

Ready shows the activation is queued up and will run.

Completed shows that the Task Assignment has been activated.

Figure 14: Activation Status.



Token Based Software Activation with MNActivation Tool
Last updated on May 13, 2022.

Last Reviewed and Approved on PENDING REVIEW

Use Cases
The MNActivation Tool is intended to run on standalone workstations and servers that are not provisioned using RPS but are part
of Missions Network's (MN) SIPR and XLESS environments.

Pre-Requisites to Run the MNActivation Tool
NOTE

The MNActivation Tool is completely self-contained and does not need any additional programs installed in order to run.

P re-Requisites:  User 

The tool must be run using the built-in Administrator account.

Get-LocalUser | Where-Object {$_.SID -like "*-500"}

P re-Requisites:  Target Machine 

The target machine must be running on MN’s SIPR or XLESS environment.
The target machine was provisioned using a TBA Ready REACTR Image (February 2021 or later).
The Windows Operating System must be one of the following:

Windows 10 Enterprise LTSC 2019 (Based on 1809)
Windows 10 Enterprise LTSC 2021 (Based on 21H2)
Windows Server 2012 R2 Standard
Windows Server 2019 Datacenter

The Office version must be a Volume License install.
The Office version must be one of the following:

Office 2013 Professional Plus
Office 2013 Visio Professional
Office 2016 Professional Plus
Office 2016 Visio Professional
Office 2019 Professional Plus
Office 2019 Visio Professional

How to Run the Tool
NOTE

It is not required to run the MNActivation Tool locally. The tool can be run from the local drive, a USB drive, or a network share.

1. Double click the MNActivation Tool EXE.

2. The tool will prompt the user for consent. Enter Y  or y  and strike the [Enter] key.

3. After completion, the tool will provide an ending prompt. Pressing any key will close the prompt.







IMPORTANT

The target machine should NEVER be connected to the internet once the MNActivation Tool has been used!

Command Line Functionality
The MNActivation Tool has limited command line options available. It can be leveraged to run the tool using a PowerShell script,
for example.

To display the command line options:

MNActivation.exe /help

Figure 1: MNActivation Tool Command Line Help Output.

Scripting and Automating
For fully silent execution (hides output, does not prompt for user consent, and does not do a completion prompt):

MNActivation.exe /skip-consent /quiet

Same functionality as above, but in shorthand:

# shorthand
MNActivation.exe /s /q

Examples
Without Office P roducts I nstalled 





Figure 2: Without Office Products Installed.

With Office P roducts I nstalled 



Figure 3: With Office Products Installed.

Release Notes
File Version: Found by right-clicking the MNActivation Tool EXE file and navigating to the Properties tab.

Assembly Version: Found by executing MNActivation.exe /version  in the command line.

R ELE AS E
D ATE

FILE
VER S ION

AS S EMB LY
V ER S ION NOTES

2021-
03-10 1.0.0 1.0.7738.25976 Initial Release

2021-
08-11 1.1.0 1.1.7893.29909 Correctly sets the Operating System’s Activation Type to be Token Only.

2022-
05-13 1.2.0 1.2.8168.13739 Add support for Windows 10 LTSC 2021 (based on 21H2). Upgrade to .NET 6 LTS. Force

system to use KMS Client Key to ensure activation success.



RPS Customization Guide - High Level Overview
Last updated on March 15, 2019.

Last Reviewed and Approved on PENDING REVIEW

RPS provides the ability for the admin to customize some aspects of the web based GUI. This functionality allows the admin to
have the application better fit within existing branding and theming guidelines that maybe already be established.

Footer
The footer for the web user interface is off by default. Within the Web.Config file you can enable it so that it will be shown on all
pages within the web application.

For configuring the footer, you will need to add a section declaration and then create the config section called footerConfig .

Section declaration

Within the Web.Config you will want to add the following section declaration to the configuration > configSections element.

Once it is added, your configSections element should look like this:

footerConfig E lement

With the footerConfig  section has been declared in the configSections element, you can add the following footerConfig
element after the appSettings  element:

To enable the footer to be displayed, set the show attribute to true.

Adding links with in the footerConfig

Within the footerConfig  element there is a child element called links . This will take a variable number of link  elements to be
displayed on the footer.

A link  element has two attributes, the text attribute and URL attribute. The text attribute controls the text that will be displayed to
the user. The URL attribute is the actual location that user will be sent to when they click the displayed link.

For example, adding a link to the Microsoft & MSDN web sites, the configuration look like so:

Resulting in a view to the user as such:



NOTE

Note that the ASP.Net runtime monitors the Web.Config file to detect any changes that are made. This will cause the web application to restart
and then load the changes. This should only take a matter of seconds for the application to restart.

Branding Customizations
RPS allows the header of the web application to be customized with specific branding so the application can look like existing
properties within the organization.

I con

The RPS Header can be configured to show an icon to show on the left side of the header. When using the setting, the value
should represent a path that reflects the location of the image from within the application.

For example, if the image is stored at C:\WebApps\RPS\Images\brand.png and the root of the web application points to
C:\WebApps\RPS then the path would be /Images/brand.png just like it would be defined within an HTML document.

We recommend an image of 50px by 50px for best results.

Default:

No Image will be displayed

B rand Text

The brand text configuration option allows the name of the web application to be changed within the header.





Default:

The value “RPS” will be displayed.

G reeting Text

The greeting text configuration allows the administrator to update the text displaying before the logged in user’s name. This can
be set to anything or nothing if so configured.

Default:

The value “Hello, “ will be displayed before the user’s name.

Theming
Theming within RPS allows the administrator to update some color and font aspects of the web application to best match the
existing look and feel that is already established. A theme consists of background color, font color, font type and font size. There
are two main areas for theming, the header and the content area. Each of the areas is configurable within the applications
Web.Config.

Header

Header theming allows customization of background color, font and font-size for top most portion of the web application.

B ackground Color



Font

Font Color

Font S ize

This setting will take any valid CSS defined size. This includes absolute size values, relative size values, pixel and percentage sizes.
The values can be found here. This setting is applied to all the fonts within the header.



Footer

Footer theming allows customization of background color, font and font-size for top most portion of the web application.

B ackground Color

Font

Font Color



Font S ize

This setting will take any valid CSS defined size. This includes absolute size values, relative size values, pixel and percentage sizes.
The values can be found here. This setting is applied to all the fonts within the footer.

More Resources
RPS Automation Package Guidelines
RPS IPSheet Parser



RPS IPSheet Parser
Last updated on March 15, 2019.

Last Reviewed and Approved on PENDING REVIEW

The RPS IPSheet Excel file is a Microsoft Excel spreadsheet that contains CMDB endpoint data for a customer. The IPSheet will
contain a set of worksheets for NIPR, SIPR, and Colorless. Each worksheet will contain Endpoint data for Subnets and IPAddresses
needed for the CMDB. These Subnets and IPAddresses will be stored as Resource Groups and Items in the RPS database.

A sample IPSheet Excel file can be found at:

RPS > Source > Rps.Extension.IpSheet > Samples > TestIpSheet.xlsx

Assumptions
The 1st column in the worksheet is ignored.
Subnet/IPAddress are used as the name of the imported Subnet or IpAddress and are expected to be unique.
Column headers are exactly, "Telephony Rng", "Subnet", "Mask", "Gateway", "Reserved", "Assignment"
Subnet name is expected to be named "SIPR", "NIPR" or "Colorless", exactly.
Reserved IPAddresses are expected to be listed in the same order as the Subnets are.
Each set of reserved IpAddresses for a Subnet will list the subnet name in the first row ONLY.
Note: This is important because subnet names aren't unique ("Tactical Spare") so we use a combination of sequence and
presence of the name to identify a new group, rather than IP Logic.
Row 1 contains column headers.
Row 2 contains header information.
Rows 3 -> x contain Subnets.
Row x+1 contains value "Unit Base Info" in the 2nd column.
Row y contains value "Detailed Info" in the 2nd column.
Row y+1 -> z-1 contains reserved IPAddresses.
Row z contains value "End" in the 2nd column

RPS IPSheet Parser .NET Library (DLL)
The RPS IPSheet Parser is a .NET library (DLL) written in C#. This library contains two key Powershell Cmdlets for importing or
removing IPSheet data to/from the RPS CMDB database.

The PS Module defined by the RPS IPSheet Parser library assembly is imported in Powershell through the module’s manifest
(psd1). Subsequently, the Cmdlets can be called to import and parse IPSheet data into RPS.

Example:

Import-Module Rps-IpSheet

Impor t-RpsI pSheet Cmdlet 

The Import-RpsIpSheet Powershell Cmdlet is used to import IPSheet data into the RPS database. This cmdlet accepts one
parameter “Path” that accepts an absolute or relative path to the IPSheet Excel file location. Results will show the total number of
Subnets and IpAddresses imported. Warnings will show any import errors, including invalid file paths.

NOTE

The import will not overwrite or merge with existing data, so if there is a collision on subnet or ipaddress, then a warning is displayed.

Example:





Import-RpsIpSheet -Path c:\ipsheet\abc-tactical-2018.xls

Import-RpsIpSheet -Path .\abc-tactical-2018.xls

Remove-RpsIpSheetCmdlet

The Remove-RpsIpSheet Powershell Cmdlet is used to remove previously imported IPSheet data from the RPS database. This
cmdlet has no parameters. It will remove all previous imports of IPSheet data. Results will display all resource groups (subnets)
and resource items (ip addresses) removed from the RPS database.

Example:

Remove-RpsIpSheet

Powershell Script
The IPSheet data can be imported into an RPS database using Powershell. The Powershell script will import PS Module from the
RPS.Extension.IpSheet .NET assembly. The PS Module is distributed to the Content Store located at ContentStore\Modules\Rps-
IpSheet. Then the Import-RpsIpSheet cmdlet is called with an absolute or relative path to the location of the IpSheet Excel file that
contains the Subnet and IpAddress endpoint data for the CMDB.

Example:

Import-Module Rps-IpSheet
$start = Get-Date
Import-RpsIpSheet -Path C:\ipsheet\86ESB-A-Tactical-Template-11-17-2015.xls -Verbose
(Get-Date).Subtract($start).TotalSeconds

More Resources
RPS Automation Package Guidelines
RPS Customization Guide - High Level Overview



Introduction to RPS Instance Definitions
Last updated on May 12, 2021.

Last Reviewed and Approved on PENDING REVIEW

Introduction
RPS Instance Definitions are an abstraction layer on top of existing RPS Types. Types currently allow us to define a specific Type of
Resource or Target Item, its expected or possible Properties and their associated value types (string/int/etc...). Instance Definitions
will allow us to take these generic Types and combine them together to create complex, nested, entities composed of many
different Types through Parent/Child and assignment relationships and the known default values for each individual Types'
properties.

Examples: SNEs, TCNs, TSI-Large, laptop, could be a VM (because it could be a collection of components)

Instance Definition Fundamentals
I nstance D efin it ion Reference   

RPS Instance Definition Reference is the assignment of the instance definition to a root Resource Item, which results in a set of
one or more Resource Items to be run. This is also referred to as an "Instance Definition". The Instance Definition Reference
classes are able to create assignments between all of the items in the hierarchy and are able to invoke everything that is not at the
top Instance Definition level.

Why R P S  I nstance D efin it ion?      

We have defined many existing Types such as Vehicle, Computer, VirtualMachine, NetworkConfiguration, and so on. The entities
we are now interacting with though are complex and composed of many of these Types in Parent/Child hierarchies. Instance
Definitions are collections of Type Definitions that have the ability to create an object. Type Definitions are individual parts that
define the properties of an object; however, they do not create an object on their own.

Example: Virtual Machine, NIC, drive, etc.

NOTE

The word Instance Definition is formerly known as 'Templates'.

I nstance D efin it ion Terms and D efin it ions      

Instance Definition The abstraction layer on top of existing RPS Types.
Instance Definition Reference The assignment of the instance definition to a root Resource Item, which results in a set of
one or more Resource Items to be run.
Instance Definition Item The item on the abstraction layer on top of existing RPS Types.
Instance Definition Node A node item that will result in association of a node with target items that are created when an
Instance Definition is invoked.

Instance Definition PowerShell Cmdlets
G etting an I nstance D efin it ion     

Gets an Instance Definition by Id.

Get-RpsInstanceDefinition -Id $lookupId

Sett ing an I nstance D efin it ion    





Creates or Updates an Instance Definition.

$instanceDef = Set-RpsInstanceDefinition -Name "MyInstanceDef" -Properties @{Prop1 = "Value1"} -ParentNodeId 
$nodeId

I nvoking an I nstance D efin it ion    

Creates instances based on the Instance Definition using a Resource Item to hold its settings.

$settings = Get-RpsResourceItem -Id $guid
Invoke-RpsInstanceDefinition -settings $settings

Creating an I nstance D efin it ion   

Creates a new Instance Definition.

New-RpsInstanceDefinition -Name testName 

Creating a New I nstance D efin it ion With P roper t ies       

$hs = @{
    Prop1 = "value1"
    Prop2 = "value2"
}
New-RpsInstanceDefinition -Name testName -Properties $hs 

Creating a New I nstance D efin it ion With P roper t ies and a Parent Node      

$nodeId = "81B8272D-B49C-4350-A8F4-ABBB9CE29C68"
$hs = @{
    Prop1 = "value1"
    Prop2 = "value2"
}
New-RpsInstanceDefinition -Name testName -Properties $hs  -ParentNodeId $nodeId

Creating a New I nstance D efin it ion With V ir tual Machine and Network Configuration     



$vmTypeDef = Get-RpsResourceItem -Name VirtualMachine -Type RpsTargetType
$nicTypeDef = Get-RpsResourceItem -Name NetworkConfiguration -Type RpsTargetType
$credentialTypeDef = Get-RpsResourceItem -Name Credential -Type RpsResourceType

$vmAdServer = New-RpsInstanceDefinitionItem -EntityName "Ad.[^DomainName]" -Name AdServer -TypeDefinition 
$vmTypeDef -Properties @{
    JoinDomain = $false
    ComputerName = 'AD'
    DnsZone = '[^DomainName]'
    OSType = 'Windows'
    OSVersion = '8.1'
    MemoryMB = 1024
    IsDC = $true
}
$vmAppServer = New-RpsInstanceDefinitionItem -EntityName "App.[^DomainName]" -Name AppServer -TypeDefinition 
$vmTypeDef -Properties @{
    JoinDomain = $true
    ComputerName = 'APP'
    DnsZone = '[^DomainName]'
    OSType = 'Windows'
    OSVersion = '8.1'
    MemoryMB = 2048
    IsCDN = $true
    IsDB = $true
    IsTms = $true
}
$nicVlan996 = New-RpsInstanceDefinitionItem -EntityName "[^ParentName]-Vlan996" -Name Nic-Vlan996 -
TypeDefinition $nicTypeDef -Properties @{
    Primary = $true
    VlanId = 996
    NetworkCategory = 'DomainAuthenticated'
}
$credentialRpsAdmin = New-RpsInstanceDefinitionItem -EntityName "[^DomainPrefix]_RpsAdmin" -Name 
Credential_RpsAdmin -TypeDefinition $credentialTypeDef -Properties @{
    UserName = '[^DomainPrefix]\RpsAdmin'
    Role = 'ServerAdmin'
    IsLocal = $false
    CreateAccount = $true
    PasswordNeverExpires = $false
}
$instanceDefinition = New-RpsInstanceDefinition -Name Vehicle -Properties @{DomainName = 'RequiredValue'; 
DomainPrefix = 'RequiredValue'}
New-RpsInstanceDefinitionReference -Name Vehicle_AppServer -InstanceDefinition $instanceDefinition -
InstanceDefinitionItem $vmAppServer
New-RpsInstanceDefinitionReference -Name Vehicle_AppServer -InstanceDefinition $instanceDefinition -
InstanceDefinitionItem $vmAdServer
New-RpsInstanceDefinitionReference -Name Vehicle_AppServer -InstanceDefinition $instanceDefinition -
InstanceDefinitionItem $nicVlan996 -ParentItem $vmAppServer
New-RpsInstanceDefinitionReference -Name Vehicle_AppServer -InstanceDefinition $instanceDefinition -
InstanceDefinitionItem $nicVlan996 -ParentItem $vmAdServer
New-RpsInstanceDefinitionReference -Name Vehicle_AppServer -InstanceDefinition $instanceDefinition -
InstanceDefinitionItem $credentialRpsAdmin
New-RpsInstanceDefinitionReference -Name Vehicle_AppServer -InstanceDefinition $instanceDefinition -
InstanceDefinitionItem $credentialRpsAdmin -ParentItem $vmAppServer
New-RpsInstanceDefinitionReference -Name Vehicle_AppServer -InstanceDefinition $instanceDefinition -
InstanceDefinitionItem $credentialRpsAdmin -ParentItem $vmAdServer
$settingsResourceItem = New-RpsResourceItem -Type Settings -Name UnitASettings -Properties @{
    DomainName = 'Master.Rps'
    DomainPrefix = 'Master'
}
Invoke-RpsInstanceDefinition -InstanceDefinition $instanceDefinition -settings $settingsResourceItem

More Resources



RPS Instance Definition Item
RPS Instance Definition Node



RPS Instance Definition Item
Last updated on June 25, 2021.

Last Reviewed and Approved on PENDING REVIEW

Intended Audience
This document is intended for use by the developer.

Introduction
RPS Instance Definition Items are items on an abstraction layer on top of existing RPS Types. An Instance Definition Item is a
wrapper for an RPS Type and associated Properties.

Terms and Definitions
Instance Definition The abstraction layer on top of existing RPS Types.
Instance Definition Reference The assignment of the Instance Definition to a root Resource Item, which results in a set of
one or more Resource Items to be run.
Instance Definition Item The item on the abstraction layer on top of existing RPS Types.
Instance Definition Node A node item that will result in an association of a node with target items that are created when
an Instance Definition is invoked.

Creating, Getting, Setting, and Removing an Instance Definition Item
Before activating any software, you must establish your working session. To do so, execute the following PowerShell Command in
PowerShell ISE Administrator Mode.

IMPORTANT

Start by establishing your working session in PowerShell ISE Administrator Mode.

1. Click on the Search Icon from the Start Menu. 





Figure 1: Click on Search Icon.

2. Search for PowerShell ISE by typing PowerShell ISE in the Search bar. 



Figure 2: Search for PowerShell ISE.

3. Click on Run as administrator. 



Figure 3: Open PowerShell ISE as Administrator.

Creating an I nstance D efin it ion I tem    

Create new Instance Definition Item by Type Definition ID.

New-RpsInstanceDefinitionItem -EntityName $testEntityName -Properties $prop -TypeDefinitionId $typedefId

Create new Instance Definition Item by Type Definition object.

New-RpsInstanceDefinitionItem -EntityName $testEntityName -Properties $prop -TypeDefinition $typedef

G etting an I nstance D efin it ion I tem     

Find an Instance Definition Item by Type Definition ID.

Get-RpsInstanceDefinitionItem -Id $lookupId

Sett ing an I nstance D efin it ion I tem     

Updates Instance Definition Item. If it doesn't exist, it will create a New Instance Definition Item.

Set-RpsInstanceDefinitionItem -Name $Name1 -TypeDefinitionId $id -Properties @{Prop1 = "Value1"} -EntityName 
$entityName 

Removing an I nstance D efin it ion I tem    

Delete Instance Definition by ID.

Remove-RpsInstanceDefinitionItem -Id "8825A09C-CCE3-4BB0-BCE1-03B4729AC423"
Remove-RpsInstanceDefinitionItem -InstanceDefinitionItem $RPSInstanceDefinitionItem



More Resources
RPS Instance Definition
RPS Instance Definition Node



RPS Instance Definition Node
Last updated on June 28, 2021.

Last Reviewed and Approved on PENDING REVIEW

Intended Audience
This document is intended for use by a developer.

Introduction
RPS Instance Definition Nodes are definitions for nodes that can be created and associated with Instance Definitions.

Terms and Definitions
Instance Definition A layer on top of existing RPS Types that translates a high-level request into the low-level commands
required to perform an operation.
Instance Definition Reference The assignment of the Instance Definition to a root Resource Item, which results in a set of
one or more Resource Items to be run.
Instance Definition Item The item on the Instanace Definition layer on top of existing RPS Types.
Instance Definition Node A node item that will result in an association of a node with target items that are created when
an Instance Definition is invoked.

Creating, Getting, Setting, and Removing an Instance Definition Node
Before activating any software, you must establish your working session. To do so, execute the following PowerShell Command in
PowerShell ISE Administrator Mode.

IMPORTANT

Start by establishing your working session in PowerShell ISE Administrator Mode.

1. Click on the Search Icon from the Start Menu. 





Figure 1: Click on Search Icon.

2. Search for PowerShell ISE by typing PowerShell ISE in the Search bar. 



Figure 2: Search for PowerShell ISE.

3. Click on Run as administrator. 



Figure 3: Open PowerShell ISE as Administrator.

Creating an I nstance D efin it ion Node   

Create new Instance Definition Node with only the required parameters.

New-RpsInstanceDefinitionNode -EntityName ConcreteName1 -Name Name1 -HostName microsoft.com -IPAddress 
10.10.10.10

Create new Instance Definition Node with all parameters.

New-RpsInstanceDefinitionNode -EntityName ConcreteName1 -Name Name1 -HostName microsoft.com -IPAddress 
10.10.10.10 -SyncEndpointUrl microsoft.com/sync -CertificateThumbprint xyz123 -PollingInterval 500

Create new Instance Definition Node with additional properties.

New-RpsInstanceDefinitionNode -EntityName ConcreteName1 -Name Name1 -HostName microsoft.com -IPAddress 
10.10.10.10 -Properties @{Property1 = 'Value1'}

G etting an I nstance D efin it ion Node     

Find an Instance Definition Node by ID.

Get-RpsInstanceDefinitionNode -Id $lookupId

Find an Instance Definition Node by name.

Get-RpsInstanceDefinitionNode -Name $lookupName

Sett ing an I nstance D efin it ion Node    



Updates Instance Definition Node. If it doesn't exist, it will create a new Instance Definition Node.

Set-RpsInstanceDefinitionNode 

Removing an I nstance D efin it ion Node   

Delete Instance Definition Node by ID or by object.

Remove-RpsInstanceDefinitionNode -Id "8825A09C-CCE3-4BB0-BCE1-03B4729AC423"
Remove-RpsInstanceDefinitionNode -InstanceDefinitionNode $instanceDefinitionNode

More Resources
RPS Instance Definition
RPS Instance Definition Item



How to Configure Logging for the RPS API
Last updated on February 27, 2020.

Last Reviewed and Approved on PENDING REVIEW

This guide will provide links for how to configure logging for the RPS API. RPS uses Serilog for logging and log file management.
RPS reads an app settings section of the app.config file within RPS to configure Serilog. The app.config file for the RPS API is
located in the Source/Rps.Api folder.

The Serilog website is located at https://serilog.net/
The Serilog documentation for app settings can be found at https://github.com/serilog/serilog-settings-appsettings
RPS will honor all app settings that Serilog supports by passing the app settings section to Serilog upon construction of the
logger.



How to Configure RPS-Mapped Parameters
Last updated on September 23, 2021.

Document Status: Document Developer Quality Pending.

Scalar Parameters
Simple [string] , [int]  and [bool]  parameters, such as $IPAddress  and $OutputPath , are supplied by RPS by convention.
When RPS is publishing the Partial assigned to a target, it begins with the ResourceAssignment representing the assignment
between the partial config and the computer it's publishing to or when Rps is deploying the Packaging Script Provider it begins
with the TargetItem it is applying the package to.

RPS follows these steps, in order, to find a value for $OutputPath :

1. Look for a property on the ResourceAssignment named "OutputPath" (When used in a Partial Configuration.)
2. Next, look for a property on the TargetItem named "OutputPath"
3. Next, look for a property on the TargetItem's parent named "OutputPath"
4. Traverse the parent items until reaching the root TargetItem
5. Finally, look to the Node for a property named "OutputPath"

NOTE

Supplying RPS data to the parameters allows an Administrator to structure data in a more natural way. For example, the OutputPath is common
for the Node, so it can be specified once, instead of on every computer within the Node.

PSCredential Parameters
Nearly every partial config will require the use of credentials. To simplify usage, RPS will automatically supply a parameter of type
[PSCredential]  by finding a corresponding Credential ResourceItem in RPS.

Using the example below, RPS follows these steps to find a value for $DomainAdmin :

[Parameter(Mandatory = $true)]
[pscredential]
$DomainAdmin,

1. Look for a "Credential" ResourceItem assigned to the Target computer with a "Role" matching the parameter's name,
"DomainAdmin"

2. Next, look for a "Credential" ResourceItem assigned to the Target computer with a "ResourceState" matching the
parameter's name

Hashtable Parameters
[Hashtable]  parameters allow mapping configuration items in RPS into structured data that PowerShell can easily consume.
Because there are many options for supplying complex data to a parameter, a parameter uses attributes to indicate to RPS how to
supply the values.

The required $DSCEncryptionCertificate  parameter is an example. RPS will find a Certificate ResourceItem assigned to the
computer with a Role which includes "DSCEncryption". That Certificate info, if found, will be supplied to the partial automatically
as a Hashtable.





[Parameter(Mandatory = $true)]
[ResourceItemMapping(EntityType = [ResourceTypes]::Certificate, Role = 'DSCEncryption')]
[Hashtable]
$DSCEncryptionCertificate

Entity Mappings

The [ResourceItemMapping]  attribute indicates that this parameter is mapped to a ResourceItem in RPS. Supported mappings
are:

ENTIT Y AT TR IB U TE E X AMPLE

ResourceItem [ResourceItemMapping] [ResourceItemMapping(EntityType =
[ResourceTypes]::Certificate, Role = 'DSCEncryption')]

TargetItem [TargetItemItemMapping] [TargetItemMapping(EntityType = "NetworkConfig")]

ResourceGroup [ResourceGroupMapping] [ResourceGroupMapping(EntityType = "ADGroup", IsAssigned
= $true)]

ResourceAssignment [ResourceAssignmentMapping] [ResourceAssignmentMapping(EntityType =
"SoftwarePackage")]

Mapping P roper t ies  

The following properties are used to filter the mappings:

PR OPER T Y D ES CR IPTION R EQU IR ED APPLIES  TO

EntityType Indicates to RPS to filter based on the item's type. Yes All

Role Indicates to RPS to filter based on items that contain the specified
Role. No ResourceItems

IsAssigned Indicates to RPS to only consider items assigned to the target.
Defaults to $true No ResourceItems, ResourceGroups

EntityIsActive Indicates to RPS to only consider active items. Defaults to $null No ResourceItems, TargetItems,
ResourceGroups

Hashtable Array Parameters

Similar in behavior to Hashtables, except these parameters will find zero or more matches in RPS and return them as an array of
Hashtables.



Creating Dynamic Resource and Target Groups
Last updated on February 12, 2021.

Last Reviewed and Approved on PENDING REVIEW

Dynamic Groups allows you to add filter conditions to a group. Then any Resource or Target that matches the conditions will be
automatically added to those groups.

Use Cases

1. Create a Target Group of Windows Machines by filtering on OsType = 'Windows'. Then you can assign a Resource Item to
all Windows machines.

2. Create a Resource Group of Admin Accounts where Role Contains 'Admin'.

S teps

$condition1 = New-RpsGroupCondition -ConditionOperator "Eq" -Property "Type" -Value "VirtualMachine"
$condition2 = New-RpsGroupCondition -ConditionOperator "Contains" -Property "Role" -Value "RpsAdmin" -
Delimiter "|"

New-RpsResourceGroup -Name DynamicGroup1 -Type DynamicGroup -Operator "And" -Condition $condition1, 
$condition2

The first command New-RpsGroupCondition  describes the condition. This uses the same syntax as PowerShell Operators.

We support strings, booleans, integers, containments, and regex comparisons. If a property on an entity is an array, then you can
supply the delimiter value to split the string into an array.

New-RpsResourceGroup  and New-RpsTargetGroup  have two new additional fields.

"Conditions", which takes a list of the conditions object created above.

"Operator", with values 'And' or 'Or'.

NOTE

The operator value 'And' says all conditions must match; 'Or' says only one condition must match.





How to Import RPS Data Into the CMDB
Last updated on August 23, 2021.

Document Status: Document Developer Quality Complete.

Introduction
RPS provides the ability to export various data to an XML file, which can then be imported. To see more information on how to
export RPS data and which kinds of data can be exported, see How to Export the CMDB.

RPS data can be imported using the following two methods: using the RPS GUI or using PowerShell.

Import RPS Data Using the RPS GUI
1. From the RPS header, select Admin → Import.

Figure 1: Navigating to the RPS Import screen.

This will take you to the "Upload Import File" view.

Figure 2: The RPS Import screen.

NOTE

RPS supports importing both encrypted and unencrypted files. In order to import encrypted files, the encrypting certificate and password
must be provided alongside the encrypted data file. If importing an unencrypted file, only the data file needs to be provided.





For encrypted files, proceed to Step 2. For unencrypted files, skip ahead to Step 5.

2. If importing an unencrypted file, skip to Step 4. If importing an encrypted file, click the Choose File button next to
"Certificate File". Select the certificate needed to decrypt the encrypted data file.

Figure 3: Select the certificate file.

IMPORTANT

Only .pfx files are supported for certificate file upload. Attempting to upload a different file type will result in an error message on upload
(Step 5).

3. If importing an unencrypted file, skip to Step 4. If importing an encrypted file, the password must also be provided. Type in
the password in the Password field. The eye icon to the right of the field will toggle showing/hiding the password
characters.

Figure 4: Type in the password.

4. Click the Choose File button next to "Import File" and select the data file to import.

Figure 5: Select the data file to import.

IMPORTANT

Only .xml files are supported for import data file upload. Attempting to upload a different file type will result in an error message on
upload (Step 5).







The Upload button should now be enabled.

5. Once the Import File and Certificate/Password (if encrypted) have been entered, click Upload.

Figure 6: Click Upload.

If no errors display, proceed to Step 6. Otherwise, go to the troubleshooting section below for support.

6. If no errors are encountered, the "Data To Be Imported" view will display. The following data can be selected to import into
the CMDB: Root Node(s), Target Item(s), Target Group(s), Resource Item(s), Resource Group(s), Task Map(s), and Task
Item(s).

Alternatively, if all items in the data file should be imported, check the Select All checkbox at the top of the view to select all
items in the data file for import.

Figure 7: Select all, or choose individual items to import.

Once at least one item is selected for import, the Import Selected button will be enabled.

7. Once everything to import is selected, click the Import Selected button to begin the import process. Upon completion, the
message "Import was successful." will display.



Figure 8: Import was successful.

R P S  G UI  Impor t Troubleshooting     

I nvalid File Type

Figure 9: "Invalid File Type!" error message.

Only .pfx files are supported for certificate file upload (see Step 2).
Only .xml files are supported for import data file upload (see Step 4).

The X ML Was Not Recognized

Figure 10: "The xml was not recognized" error message.

There were errors parsing the XML file. Possible reasons are:

The file is not valid.
The data file is encrypted, and the correct certificate was not provided (see Step 2).

A Password is Required

Figure 11: "A password is required" error message.

If a certificate is provided, then the password must also be provided (see Step 3).

Import RPS Data Using PowerShell
Importing via PowerShell is accomplished with the Import-RpsData  cmdlet.

Like importing using the RPS GUI, both unencrypted and encrypted data files can be imported using PowerShell. In addition, 



Import-RpsData  can also import text, such as XML content generated from XML conversion cmdlets.

NOTE

The values used for the parameters in the example code snippets throughout this section are for example only, and should be changed to real
values when used.

How to Impor t an Unencrypted D ata File 

In order to import an exported XML data file, the -Path  parameter must be passed.

Import-RpsData -Path "C:\Users\currentuser\Documents\rps-export-test-node.xml"

See Figure 12 below as an example for importing an unencrypted data file containing a single node.

Figure 12: Importing an unencrypted data file using PowerShell.

Refer to Import-RpsData Output at the end of this article to learn more about the returned results.

How to Impor t X ML D ata Contained With in PowerShell   

Import-RpsData  can import straight text, such as XML content generated from XML conversion cmdlets, using the -Text
parameter.

Import-RpsData -Text $testNode

Here is an example snippet that is storing RpsData  XML content to the $testNode  variable, then importing it via the -Text
parameter.





$testNode = '<?xml version="1.0" encoding="utf-16"?>
<RpsData xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
    <LocalNodeId xsi:nil="true" />
    <LogItems />
    <Nodes>
        <Node
          Hostname="Test"
          Id="314e6caa-9962-497e-b847-c86fa32dace2"
          IpAddress="1.1.1.1"
          IsActive="true"
          Name="TestNode">
            <ChildItems />
            <LastSyncTimeUTC xsi:nil="true" />
            <PollingInterval xsi:nil="true" />
            <Properties />
            <SyncExpirationDuration xsi:nil="true" />
            <SyncVersion xsi:nil="true" />
        </Node>
    </Nodes>
    <ResourceGroups />
    <ResourceItems />
    <TargetGroups />
    <TargetItems />
    <TaskItems />
    <TaskMaps />
    <TaskAssignments />
</RpsData>'

Import-RpsData -Text $testNode

See Figure 13 using the above example to import XML using the -Text  parameter and the resulting output.

Figure 13: Importing XML text directly within PowerShell.



Refer to Import-RpsData Output at the end of this article to learn more about the returned results.

How to Impor t an Encrypted D ata File 

When importing an encrypted data file, the certificate must be provided, or an error will be thrown:

Figure 14: Error thrown when importing an encrypted data file without a certificate.

When importing an encrypted data file, the certificate can either be passed as a .pfx file and password, or the thumbprint of a
locally installed certificate.

Using Cer t ificate File and Password 

In order to import an exported XML data file, the -Path  parameter must be passed. The file path to the .pfx certificate needed to
unencrypt the data file is passed using the -Certificate  parameter, and the password with the -Password  parameter.

IMPORTANT

The password must be passed as a SecureString object. A String password can be converted to a SecureString using the 
ConvertTo-SecureString  cmdlet.

Import-RpsData -Path "C:\Users\currentuser\Documents\rps-export-test-node-encrypted.xml" -Certificate 
"C:\Users\currentuser\Documents\test_cert.pfx" -Password $securePassword

An example of importing while passing the .pfx certificate and password and the resulting output is shown below.

Figure 15: Import an encrypted data file with .pfx certificate and password.

Refer to Import-RpsData Output at the end of this article to learn more about the returned results.

Using Cer t ificate Thumbprint 

In order to import an exported XML data file, the -Path  parameter must be passed. The thumbprint of the installed certificate
needed to unencrypt the data file is passed using the -CertificateThumbprint  parameter.

Import-RpsData -Path "C:\Users\currentuser\Documents\rps-export-test-node-encrypted.xml" -
CertificateThumbprint "f53bdaaae346627bd2657bce9e5fe81d07219c9dd"

An example of importing an encrypted data file using the thumbprint of an installed certificate and the resulting output is shown
in Figure 16 below.





Figure 16: Import an encrypted data file with installed certificate thumbprint.

Refer to Import-RpsData Output at the end of this article to learn more about the returned results.

Impor t-RpsD ata Output 

The object returned by the Import-RpsData  cmdlet contains several fields that describe the import results.

HasAny

Type: Boolean

Returns True if any RPS data was found and imported. Returns False if no data was found.

See Figure 17 for an example where an empty import file was imported.

Figure 17: Importing an empty data file.

HasErrors

Type: Boolean

Returns True if any errors were encountered while importing, such as if the exported data does not contain the required fields.

See Figure 18 for an example of an invalid import attempt.

Figure 18: Importing with errors.



How to Export the CMDB
Last updated on August 19, 2021.

Document Status: Document Developer Quality Complete.

Intended Audience
This document is intended for use by the LSI or developer.

Introduction
The Rapid Provisioning System (RPS) allows users to export all the data sorted in the CMDB using both the RPS web GUI and
PowerShell.

The exported data is exported in an XML or JSON format and allows a user to re-import the data at a later time or on another
system that has RPS installed.

To learn more about the re-import process, see How to Import RPS Data Into the CMDB.

Export the CMDB Using the RPS Web GUI
1. From the RPS header, select Admin → Export.

Figure 1: Navigating to the RPS Export screen.

This will take you to the "Export Data" view.

2. If the export must be encrypted, click the Choose File button next to "Certificate File". Select the certificate to encrypt the file
with.



Figure 2: Select the certificate file.

3. Select the data to be exported. The following individual data can be selected to export from the CMDB: Root Node(s), Target
Item(s), Target Group(s), Resource Item(s), Resource Group(s), Task Map(s), and Task Item(s).

Figure 3: Select individual data to export.

Alternatively, if all data in the CMDB should be exported, check the Select All checkbox at the top of the view to select all
items in the CMDB for export.

Figure 4: Select all data to export.

Once at least one item is selected for export, the Export Selected button will be enabled.

4. Once everything to export is selected, click the Export Selected button to begin the export process.

Figure 5: Click Export Selected.

NOTE

The export file will download to the default local download location configured in the current browser.

Export the CMDB Using PowerShell
1. Import the RPS API module.

Import-Module C:\ContentStore\Modules\Rps-Api

2. Run the Export-RpsData  cmdlet.

Parameter options for the Export-RpsData  cmdlet are:





PAR AME TER NAME T YPE R EQU IR ED D ES CR IPTION

Path String True Path and filename where the output file will be saved to. Ex: 
C:\outputs\cmdbExport.xml

Format String True Output format for the export file. Only XML and JSON are currently
supported. Default: XML.

TargetItems TargetItem[] False Supply an array of target items to export.

ResourceItems ResourceItems[] False Supply an array of resource items to export.

TaskMaps TaskMap[] False Supply an array of task maps to export.

IncludeAll SwitchParameter True When selected will export all data from the CMDB, excluding security
data.

IncludeGlobal SwitchParameter False Switch to export all global resources, task maps, and tasks.

NodeId Guid True ID of the node to be exported. All related targets and descendant
targets will be included.

SetLocal SwitchParameter False Set the provided NodeId as the Local in the exported data.

SetLocalNodeId Guid False Set the provided SetLocalNodeId as the Local in the exported data.

Force SwitchParameter False Overwrite the previously exported file, if it exists.

CertificateThumbprint String False The thumbprint of the certificate that will be used to encrypt the
resulting configuration file, if provided.

Certificate String False The certificate that will be used to encrypt the resulting configuration
file, if provided.

Expor t-RpsD ata Usage Examples 

Some common ways to use the cmdlet include:

Export all data and encrypt it with a certificate thumbprint:

Export-RpsData -IncludeAll -Path "c:\temp\encryptedrps.xml" -CertificateThumbprint 
"2b8a73beb5da48d8ae612075428437bd677b86bb"

Export all data and encrypt it with a certificate:

$exported = Export-RpsData -IncludeAll -Path "c:\temp\encryptedrps.xml" -Certificate 
"C:\ContentStore\Certificates\APP.rps.local_NodeEncryption.cer"

Export a specific node in JSON format:

Export-RpsData -IncludeAll -Format json -Path "c:\temp\rpsdata.json" -NodeId f0386465-ed03-4f60-aec4-
c9745fce0f7d


	Table of Contents
	RPS v4.0.0
	Introduction & Overview
	Introduction
	RPS Terms and Definitions
	What's New in 4.0.0
	Release Notes
	Using the RPS API
	RPS Sample Scenario - Tourism
	RPS Install Guide
	Ports, Protocols, & Security Guide
	PostgreSQL
	Common Repo Process

	Design
	RPS Software Design
	RPS Configuration Management (DSC) Software Design
	Data
	RPS Data Persistence (CMDB) Software Design
	Configuration Changes to a Two Domain Architecture
	Data Validation Schema Definition
	Data Validation Integration in RPS


	Operations
	Certificate Management
	RPS Certificate Management Technical Design
	Certificate Usage
	Certificate Requirements for Linux Clients
	Certificate Request Plugin Configuration
	Certificate Request Process
	Certificate Rolling

	DSC Authoring
	Authoring RPS DSC Partial Configs
	Authoring RPS DSC Resources

	DSC Pull Server
	Introduction to DSC Pull Server
	RPS Settings for DSC Pull Server
	Runbooks and TaskMaps for DSC Pull Server

	Provisioning
	Create a Host Through RPS
	Create RPS Credentials
	Create a Virtual Machine Template Through RPS
	Create a Hyper-V Virtual Machine Through RPS
	RPS Building iPXE ROMs
	RPS PXE
	Configuring ESXi VMs to Use iPXE
	Using the Provisioning Service

	Task Management Service
	How to Add Runbooks to RPS
	How to Get and Set the Default Runbook Folder
	How to Modify Runbooks in RPS
	How to Remove Runbooks From RPS
	Task Management Service (TMS) Settings

	Tasking
	RPS Tasking Guide
	RPS Task Assignment Diagram
	Authoring RPS Runbooks

	Role-Based Access Control (RBAC)
	Introduction to RBAC
	How to Add and Remove User Roles
	How to Manage User Roles with PowerShell
	How to Import and Export Users with the Web User Interface
	How to Add and Remove Users with PowerShell
	How to Add and Remove Users with the Web User Interface
	Audit Entries

	Synchronization
	How to Add a Node to an Existing RPS Environment
	How to Self-Register Your Node
	How to Configure RPS Sync Settings

	Logging
	Introduction to Logging in RPS
	How to Control Logging Behavior in RPS
	Viewing RPS Logs
	Writing Log Messages

	Testing
	RPS Testing Strategy

	Additional Resources
	RPS Automation Package Guidelines
	Token Based Software Activation with PowerShell
	Token Based Software Activation with RPS Runbooks
	Token Based Software Activation Using the User Interface
	Token Based Software Activation with MNActivation Tool
	RPS Customization Guide - High Level Overview
	RPS IPSheet Parser
	RPS Instance Definition
	RPS Instance Definition Item
	RPS Instance Definition Node
	How to Configure Logging for the RPS API
	How to Configure RPS-Mapped Parameters
	Creating Dynamic Resource and Target Groups
	How to Import RPS Data Into the CMDB
	How to Export the CMDB




