
Table of Contents

 RDT v1.0.0
 Introduction & Overview

 Introduction
 Release Notes
 RDT Settings

 How To
 Install and Uninstall RDT
 Data Hydration
 Legion of Laptops
 RPS Provisioning
 iPXE
 Export CMDB

RDT v1.0.0
Last updated on March 28, 2022.

Last Reviewed and Approved on PENDING REVIEW

Introduction
RDT is an RPS specific tool that makes the hydrating and provisioning RPS processes user-friendly. RDT leverages the powerful
RPS API and overlays an easy-to-use user interface to simplify interacting with RPS. It allows users the functionality of hydrating
an RPS database, provisioning RPS on various nodes, and importing RPS data, all within one simple user interface.

NOTE

RDT v1.0.0 is dependent on RPS v4.0.0 API.

App
RDT is a Windows Presentation Foundation(WPF) app . It is a standalone Windows application and is installed on the machine on
which it is run. It is expected to be installed alongside a valid RPS installation. For more information about how to install and
uninstall RDT, please refer to How to Install and Uninstall RDT.

Use Cases
RDT supports two main use cases: Data Hydration and RPS Provisioning.

D ata Hydration

RDT supports data hydration via the Data Hydration page. On this screen, users will be able to import templates in order to
hydrate the CMDB. For more information on the Data Hydration page, see Data Hydration.

R P S P rovisioning

RDT supports RPS provisioning across two different screens: RPS Provisioning and Legion of Laptops.

In the RPS Provisioning screen, users can: select task maps, assign them to a node, and run the task map while monitoring the
output on a console. For more information, see RPS Provisioning.

Using Legion of Laptops, users can import RPS data from a previous export of the RPS database. For more information, see
Legion of Laptops.

Definitions
CMDB: Configuration Management DataBase

RPS: Rapid Provisioning System

API: Application Programming Interface



RDT Release Notes
Last updated on March 28, 2022.

Last Reviewed and Approved on PENDING REVIEW

What's New in 1.0.0 (January 31, 2022)
Added

Added data hydration functionality

Allows a user to use instance definitions and data mapping to hydrate a CMDB with confirmation data.

Added provisioning functionality

Using the RDTActions.json config file, a user can create actions and use those actions to assign task maps to targets.
The user can also use RPS Task management to provision the targets with detailed status and logs.

Added Legion of Laptops functionality

Allows a user to import data into the CMDB from an RPS XML export file.

Added Export CMDB functionality

Allows a user to export data in RPS XML export file.

Known I ssues

Some icons may not be shown correctly to the user in a deployed environment. This issue does not effect functionality.

RDT Settings
Last updated on March 28, 2022.

Last Reviewed and Approved on PENDING REVIEW

Introduction
RDT contains many settings designed to be configured by the LSI. These settings are in the appsettings.json file at the installed
location of RDT. The typical path for this file is: C:\Program Files\RPS\RDT\ .

The table below contains all settings that are configurable by the LSI.

IMPORTANT

Any setting in the appsettings.json file that is not listed in Table 1 should not be modified.

Settings
Table 1 : R DT Sett ings

S E T TING D ES CR IPTION E X AMPLE

ActionFilePath The path to the RDT Actions JSON file used to configure
the provisioning page. "C:\ContentStore\RDT\RDTActions.json"

HydrationConfigFilePath The path to the RDT Hydration Config JSON used to
configure the inputs for the data hydration page. "C:\ContentStore\RDT\DataHydrationConfig.json"

InstanceDefFolderPath The path to the instance definitions used for data
hydration. "C:\ContentStore\RDT\InstanceDefs"

DataMappingFolderPath The path to the data mapping JSON files used for data
hydration. "C:\ContentStore\RDT\DataMappings"

Logging → LogLevel →
Default

The log level of what is logged by default. See Table 2 for
more information about log levels. "Information"

Table 2: Log Levels

LEVEL U S AG E

Verbose Verbose is the noisiest level, and rarely (if ever) enabled for a production app.

Debug Debug is used for internal system events that are not necessarily observable from the outside, but useful when determining
how something happened.

Information Information events describe things happening in the system that correspond to its responsibilities and functions. Generally,
these are the observable actions the system can perform.

Warning When service is degraded, endangered, or behaving outside of its expected parameters, Warning level events are used.

Error When functionality is unavailable or expectations are broken, an Error event is used.



Fatal The most critical level. Fatal events demand immediate attention.

LEVEL U S AG E

How to Install and Uninstall RDT
Last updated on March 28, 2022.

Last Reviewed and Approved on PENDING REVIEW

Installation
The installation file, "RDT.Installer.msi", is located within C:\ContentStore on the local machine.

1. Double click on the installation file.

2. Click Next to proceed on Welcome Screen.

Figure 1: Installation screen.

3. Select Installation folder

Figure 1: Select Installation Folder.

4. Confirm Installation

Figure 2: Confirm installation.

5. Click on close to finish installation.

Figure 3: Complete installation.

Application Location
The RDT application, "RDT.exe", is located at C:\Program Files (x86)\RPS\RDT or at the location selected in step 3 of Installation
process There is shortcut created for the RDT in desktop.

Uninstallation
The RDT application can be uninstalled via Windows Settings or using the uninstallation file.

Uninstallat ion via Windows Sett ings

1. Navigate to "Settings", "Apps & features", and search for "RDT".

Figure 3: Search for "RDT" in "Apps & features" to uninstall RDT.

2. Select the RDT application and click "Uninstall".

Uninstallat ion via Uninstallat ion File

RDT can also be uninstalled by running RpsInstaller.msi file.

1. Double click on the uninstallation file.

2. Select to remove RDT option and Click Finish on the confirmation prompt.

Figure 4: Click Finish to proceed with uninstallation.

3. Click close to complete the uninstallation process.

Data Hydration
Last updated on March 28, 2022.

Last Reviewed and Approved on PENDING REVIEW

Introduction
Data Hydration is a service within the RDT, which provides the ability to hydrate the CMDB. This service is intended to be used
before the provisioning process, to import existing data from a previous installation of RPS.

Usage

Figure 1: This is the initial view the user sees when first navigating to the Data Hydration page.

The specific fields present on the screen is dynamically populated from the Data Hydration Configuration file, located in the
ContentStore\RDT\DataHydrationConfig.json.

I nputs

In order for the RPS data to be hydrated, the user must select an Instance Definition file containing the definitions they would like
to hydrate. This is done via the Unit Config template input. Additionally, the user must supply the files containing the data which
should be hydrated for the listed Instance Definitions as per the Data Hydration Configuration.

The Unit Config template input supports .xlsx, .xls, and .csv file types. The other inputs support filetypes as listed in the Data
Hydration Configuration file.

Once the Unit Config template file has been uploaded, the table on the right displays the data read in from the file. See Figure 2
for an example of this with a single Instance Definition:

Figure 2: An example of a populated Instance Definition table. In this case, there is only 1 Instance Definition in the uploaded Unit
Config template.

S tar t ing the Hydration P rocess

Once all inputs have been selected, press the Process button to read in the data and prepare for the hydration.

Figure 3: Processed Data Hydration.

Once the input fields have been processed, they can no longer be changed. In order to modify an input field once the Process
button has been selected, the Process button becomes the Reset button. Pressing "Reset" clears all inputs and return the Data
Hydration screen to the original default view.

Upon processing the data, the Instance Definition table will be hidden and the console will be shown. Toast status messages
appears in the top right showing the status of the processing and whether it succeeded or failed.

D ata Hydration Order of Operations

The order of operations for a Data Hydration process is Build → Generate Certificates → Configure Master Keys → Validate.

1 . B uild

When the Build button is selected, the Instance Definition and the data mappings listed in the input sheets are imported into the
CMDB. The progress is tracked through log statements, which appear in the console. An example of a successful build is shown in
Figure 4:

Figure 4: Successful build.

If the build fails, a toast message appears stating that the build failed, in addition to a console log message. See Figure 5 for an
example of this:

Figure 5: Build failure.

NOTE

Error messages in the console are shown in an orange font.

2. G enerate Cer t ificates

Once the build has succeeded, self-signed certificates need to be generated. This can be done by clicking the "Generate
Certificates" button. Upon pressing this button, a PowerShell window appears that shows the output of this operation. The user
needs to press the Enter key to close the PowerShell window. Any errors in the script would be displayed in the PowerShell
window and is not visible in the console log window on RDT.

3. Configure Master Keys

Once the certificates are generated, Master Keys needs to be configured. This can be done by clicking the "Configure Master Keys"
button. This opens a PowerShell window which displays the output of the operation. Like Generate Certificates, this PowerShell
window does not exit until the user presses the Enter key, and all relevant messages and errors would be displayed in the
PowerShell window, not on the RDT console log.

4. Validate

Once the previous steps have been completed, the user can press the Validate button to begin the validation process. The result of
this process would be displayed in the console log window.

Expor t C MD B



Please refer to Export CMDB

Data Hydration Configuration File
The Data Hydration Configuration file is used to configure the inputs that appear on the Data Hydration screen. An example file is
shown below:

{
 "ImportFields": [
 {
 "Name": "Input 1",
 "DisplayName": "The First Input",
 "FileTypes": [
 ".xlsx",
 ".xls",
 ".csv"
],
 "Description": "Some description",
 "WorksheetMappings": [
 {
 "DestSheetName": "Input1",
 "SourceSheetName": "sheet1"
 }
],
 "DataMappings": [
 {
 "Table": "Tablename",
 "MappingName": "Tablename.mapping.json",
 "FilterName": "filtername",
 "CIName": "ciname"
 }
]
 }
]
}

The Data Hydration Configuration file contains the following fields:

ImportFields: An array of the input fields present on the Data Hydration screen. Each entry in this array corresponds to a
new file input on the screen. This field is required. This is the only allowed root property. Each object in the array must be
unique. The properties listed below are the only valid values in each object of this array.

Name: The name of the input. Type is a string. This field is required.
DisplayName: The text to display above the input on the Data Hydration page. Type is a string. This field is required.
FileTypes: The array of supported filetypes. Must have at least a single item. The available options are: ".xlsx", ".xls",
and ".csv". This field is required.
Description: The description for this input. Type is a string. This field is required.
WorksheetMappings: The array of worksheet mappings for the input file. Must have at least a single item. Each
object in the array must be unique. The properties listed below are the only valid values in each object of this array.
This field is required.

DestSheetName: The destination worksheet name. Type is a string. This field is required.
SourceSheetName: The worksheet name in the input file. Type is a string. This field is optional.

DataMappings: The array of data mappings for the input file. Must have at least a single item. Each object in the array
must be unique. The properties listed below are the only valid values in each object of this array. This field is required.

Table: The table name. Type is a string. This field is required.
MappingName: The mapping JSON file. Type is a string. This field is required.
FilterName: The filter name, if any. Type is a string. This field is required.
CIName: The CIName, if any. Type is a string. This field is required.

The Data Hydration Configuration file is validated against the following schema:

{
 "type": "object",
 "properties": {
 "ImportFields": {
 "type": "array",
 "uniqueItems": true,
 "items": {
 "type": "object",
 "properties": {
 "Name": {
 "type": "string"
 },
 "DisplayName": {
 "type": "string"
 },
 "FileTypes": {
 "type": "array",
 "minItems": 1,
 "uniqueItems": true,
 "items": {
 "type": "string",
 "enum": [
 ".xlsx",
 ".xls",
 ".csv"
]
 }
 },
 "Description": {
 "type": "string"
 },
 "WorksheetMappings": {
 "type": "array",
 "minItems": 1,
 "uniqueItems": true,
 "items": {
 "type": "object",
 "properties": {
 "DestSheetName": {
 "type": "string"
 },
 "SourceSheetName": {
 "type": "string"
 }
 },
 "required": [
 "DestSheetName"
],
 "additionalProperties": false
 }
 },
 "DataMappings": {
 "type": "array",
 "minItems": 1,
 "uniqueItems": true,
 "items": {
 "type": "object",
 "properties": {
 "Table": {
 "type": "string"
 },
 "MappingName": {
 "type": "string"

 },
 "FilterName": {
 "type": "string"
 },
 "CIName": {
 "type": "string"
 }
 },
 "required": [
 "Table",
 "MappingName",
 "FilterName",
 "CIName"
],
 "additionalProperties": false
 }
 }
 },
 "required": [
 "Name",
 "DisplayName",
 "FileTypes",
 "Description",
 "WorksheetMappings",
 "DataMappings"
],
 "additionalProperties": false
 }
 }
 },
 "required": [
 "ImportFields"
],
 "additionalProperties": false
}

The DataHydrationConfigSchema.json file is used to validate the DataHydrationConfig.json file. Config validation takes
place upon navigating to the Data Hydration page. The DataHydrationConfigSchema.json file can be found at the following
relative path for the RDT executable: "..\resources\bin\Config\Schemas\DataHydrationConfigSchema.json".

Users sees a red error box in the top right-hand corner on the RDT window if validation fails, as seen in the following figure:

Figure 10: Example showing a failed validation error message.

Legion of Laptops
Last updated on March 28, 2022.

Last Reviewed and Approved on PENDING REVIEW

Introduction
Legion of Laptops (LOL) is a service within the RDT that provides the ability to import an RPS data or security export file. This
service is intended to be used during the provisioning process to import existing data from a previous installation of RPS.

Usage

Figure 1: This is the view that the user will be presented with when initially navigating to the Legion of Laptops page.

I nputs

Before Legion of Laptops can be run, the user must select which import type they would like to perform. Additionally, the user
must supply a corresponding import source for the selected import type. The following file extensions are supported for each
import type:

Data Import: .xml, .json
Security Import: .xml

The import source must be a valid RPS-generated export file obtained from a previous installation of RPS. Export files can be
generated either through the RPS Web GUI or through PowerShell. Please refer to RBAC: How to Import and Export Users with

the Web User Interface for detailed information on how to generate an RPS security export for an existing installation.

Because RPS supports encrypted exports, Legion of Laptops is capable of importing encrypted files. The user must select the
appropriate encryption type for the import source they have provided. The following encryption types are supported:

Certificate + Password
Thumbprint

S tar t ing the Impor t P rocess

The Process button will become enabled once an import source is provided. Click Process to begin validation on the import source.
The user will then be notified if there were any issues with parsing or decrypting the import source. Please be sure that the
provided import source matches the selected import type.

Once the import source passes validation and the file content is successfully read, the user will be presented with a LogViewer
window. This window contains relevant log messages for the import process. It displays number of log messages during the
process.

The Clear button clears all the messages in the log viewer.

The Live button, seen in the upper right-hand corner of the screen, allows to toggle "live scrolling" of the log messages on or off.

Possible Outcomes
The user will be notified about whether the import succeeded upon completion of the process (as seen in Figure 2, below).

Figure 2 : This is an example of an RPS Data Import

Currently, RPS only supports imports through the legacy RPS Importer. The legacy importer does not handle conflicts if data
being imported already exists in the database (based off of the GUID). If data being imported already exists in the database, the
legacy importer will show errors. This does not indicate that the import process failed. The following figure offers an example of
this scenario:

Figure 3 : This is an example of an RPS Data Import which completed with errors encountered.

There are three possible outcomes of performing an import through LOL:

Import Complete. (Green toast notification & no errors).
Import Complete. (Green toast notification & error(s) encountered).
Import Failed. (Red toast notification).

A green notification indicates that the import was successful. A yellow notification indicates that some data could not be imported.
A green notifications with message Import Complete. indicate that the import process at least completed. Import errors can occur
for multiple reasons. Review the errors carefully to determine if further action is needed.

A red notification with message Import Failed. indicates that the import process encountered an exception and did not complete.

RPS Provisioning
Last updated on March 28, 2022.

Last Reviewed and Approved on PENDING REVIEW

Introduction
RPS Provisioning is a service within the RDT that provides the ability to provision and configure Nodes through use of the Task
Management Service (TMS).

Figure 1: This is the view the user sees when navigating to the RPS Provisioning page.

The provisioning process consists of running through a sequence of Steps which are defined when the user selects an Action from
the dropdown. Each provisioning Step corresponds to a TaskMap assigned to the selected top level target and its children. When
the provisioning process is started, the TaskItems for each generated TaskAssignment are executed by TMS.

The functionality of RPS Provisioning can also be achieved through existing PowerShell cmdlets.

Please refer to the RPS Tasking Guide for more information on the aforementioned PowerShell cmdlets and tasking.

Configuration
The options available in the Action dropdown menu in RPS Provisioning are defined via a configuration file named
RDTActions.json. This file can be found at the following relative path for the RDT executable:
"..\resources\bin\Config\RDTActions.json".

The following snippet is an example of an RDTActions.json configuration for RPS Provisioning which contains a single Action
called "Install-Rps"; however, a configuration file may contain multiple Actions.

[
 {
 "Name": "Install-Rps",
 "Steps": [
 {
 "DisplayName": "Install",
 "TaskMapName": "Install-Rps"
 }
]
 }
]

An Action may contain multiple Steps; however, in the example above, only one Step is defined. The "DisplayName" property is
used to reference the Step in the UI. The "TaskMapName" property is used to associate the Step with a particular TaskMap.

Figure 2: The RDTActions.json file is used to populate the dropdown for the Action input seen in this example. Users may select
which Action they would like to execute.

Users may add or remove an Action from the configuration by editing the RDTActions.json file.

Validation
The RDTActionsSchema.json file is used to validate the RDTActions.json file and initiates upon navigating to the RPS
Provisioning page. The RDTActionsSchema.json file can be found at the following relative path for the RDT executable :
"..\resources\bin\Config\Schemas\RDTActionsSchema.json".

If validation fails, users sees a red error box in the top right-hand corner of the RDT window, as seen in the following figure:

Figure 3: Example showing failed validation error message.

The following snippet is an example of an RDTActionsSchema.json file used for validation:

{
 "type": "array",
 "uniqueItems": true,
 "minItems": 1,
 "items": {
 "type": "object",
 "properties": {
 "Name": {
 "type": "string"
 },
 "Steps": {
 "type": "array",
 "minItems": 1,
 "uniqueItems": true,
 "items": {
 "type": "object",
 "properties": {
 "DisplayName": {
 "type": "string"
 },
 "TaskMapName": {
 "type": "string"
 }
 },
 "required": [
 "DisplayName",
 "TaskMapName"
],
 "additionalProperties": false
 }
 }
 },
 "required": [
 "Name",
 "Steps"
],
 "additionalProperties": false
 }
}

Based on the above schema, the RDTActions.json file may contain the following fields:

An array of Actions to be presented within the Action dropdown on the RPS Provisioning screen. Each entry in this array
corresponds to a single Action in the dropdown. At a minimum, one Action must be provided. Additionally, each Action
must be unique.

Name: The name of the Action. Type is a string. This field is required.
Steps: The array of Steps for the Action. Must have at least a single Step. Each Step in the array must be unique. The
properties listed below are the only valid values in each object of this array. This field is required.

DisplayName: The name to display in the UI for the Step. Type is a string. This field is required.
TaskMapName: The name of the TaskMap for this Step. Type is a string. This field is required.

Additional properties are not allowed anywhere in the RDTActions.json file based on the schema.

Usage
To use the Provisioning service, users must select an item from the Node, Target(s), and Action dropdown fields. The fields must
be populated in order, beginning with Node and ending with Action. The Node field dictates which targets are available to
provision.

When the Action field is populated, the user will be shown a preview of TaskAssignments that will execute when the RDT Tool is
run. After all three fields are populated, the Run button will be made available in the bottom right-hand corner.

Figure 4: Example of the preview that users will see after populating the Action field.

The Steps for the selected Action are shown at the top of the page above the header Tasks. In this example there is only one Step,
"Install", as indicated by the blue bubble. Executions requiring multiple Steps will be listed sequentially from left to right.

The items listed as Tasks are also ordered sequentially and are based on the TaskMap associated with the current Step. Each Task
can be clicked on to view which Targets have an assignment. Please visit RPS Task Assignment Diagram for more information on
how TaskAssignments are made.

When the Run button is clicked, the assignments shown in the preview window will be executed by TMS. The icon to the right of
each Task indicates its current status and will automatically update progress as each Task completes. The following list defines the
corresponding Task statuses for each icon:

 Not Ready, Ready, Pending, Assigned

 Running

 Retry

 ErrorContinue, PendingUserAction, Warning, Removed

 Canceled, ErrorStop

 Completed

 Questions

NOTE

Only the icon will be displayed in RDT; however, the specific statuses listed above can been seen if the TaskAssignments are queried via
PowerShell.

The status for each Task is refreshed every 3 seconds. Additionally, if a user briefly navigates away from this page and then
returns, the existing Tasks will be loaded from the CMDB if the same inputs are selected. In this situation, the Run button would
remain disabled since the assignments have already been created and executed by TMS. The user would also be notified via a
toast (pop-up) notification that the current Step was loaded from the CMDB.

Figure 5: Example of a toast (pop-up) notification for an existing assignment.

Users may also track RPS Provisioning status and learn more detailed information through the logs displayed in the Console Logs
box. Users may also navigate between Steps, to view their corresponding Tasks and statuses, by clicking the Previous and Next
buttons below the console.



Figure 6: Example of a provisioning process that has been started, and is waiting on TMS.

The Live button, seen just above the Console Logs box, allows users to toggle "live scrolling" of the console messages on or off.

Possible Outcomes
RPS Provisioning will complete once TMS has executed all of the Tasks within each Step. The following statuses indicate that the
Task has been executed:

 Completed
 ErrorContinue
 Canceled, ErrorStop

Any other status than listed above indicates that the Task has not yet been run. Once all Tasks have been executed, the Run button
will become enabled again, which signifies that the provisioning process has completed.

To confirm successful completion, expand and examine each Task status, and review the console logs.

iPXE
Last updated on March 28, 2022.

Last Reviewed and Approved on PENDING REVIEW

Overview
iPXE is an open source network boot firmware that can boot in various ways, such as from a web server via HTTP.

The iPXE feature of RDT provides a way to generate an iPXE image that can be used to make a bootable disk.

Inputs
iPXE script - A script must be selected to override the default behavior of iPXE. This script will be embedded within the iPXE
(binary) firmware that is generated.

iPXE source code location - The iPXE source code location must be selected so that RDT knows where the code is to build the
firmware. By default this location will be a relative path based on the local node's content store, e.g.
C:\ContentStore\Utilities\ipxe\src\ .

Certificate - A certificate must be selected to enable HTTPS communication. This certificate will be used when the iPXE
firmware is generated as the certificate and trusted root.

Outputs
Bootable device - A device must be selected for the iPXE firmware to be applied to. This will make the device bootable via
the iPXE firmware.

Building a Bootable iPXE disk
Fill out the required fields:

iPXE script
iPXE source code location
Certificate
Bootable device

Click on the Build button to generate the iPXE firmware and to create the bootable device.

Figure 4: Successful build.

Export CMDB
Last updated on March 28, 2022.

Last Reviewed and Approved on PENDING REVIEW

Introduction
Export CMDB is a service within the RDT that provides the ability to export the newly hydrated CMDB.

Usage

Figure 1: Export CMDB page.

I nputs

The following are the two encryption types:

Certificate + Password
Thumbprint

If encryption type is Certificate + Password, user must enter password associated with the selected certificate.

Figure 2: Certificate with Password as Encryption Type.

If the encryption type is Thumbprint, user must select valid thumbprint value from the dropdown list.

Figure 3: Thumbprint as Encryption Type.

The following are the two export types:

Rps Data
Rps Security

If the export type is Rps Data, user must select one of the appropriate avaliable option from the dropdown list.

Figure 4: Rps Data as Export Type.

Rps Security does not have any options.

S tar t ing the Expor t P rocess

The Export button becomes enabled when valid encryption type and export type is provided. Click Export to begin hydrated cmdb.
This exported file can be used in Legion of Laptops and import source file.

Regardless which method is used, upon completion of the export, status messages will be shown in the upper right-hand corner
alerting the outcome of the export, as seen in Figure 9.

Figure 5: Export complete status messages.

	Table of Contents
	RDT v1.0.0
	Introduction & Overview
	Introduction
	Release Notes
	RDT Settings

	How To
	Install and Uninstall RDT
	Data Hydration
	Legion of Laptops
	RPS Provisioning
	iPXE
	Export CMDB

